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Abstract

This paper explores the application of the Chen-Stein method to DNA sequence

analysis. In particular, we are interested in the probability of detecting an unusual

congruence between 2 sequences. We compare the results from theoretical prediction

according to the Chein-Stein method, real data, and computer simulations. Statistical

testing and confidence intervals are also provided to assess the accuracy of the theo-

retical results. Our results show that the Chen Stein method gives a decent estimate

of the exact probability.
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1 The problem

1.1 Sequence matching

DNA consists of 2 long strand of nucleotides, in the shape of a double helix. Mathematically,

a strand can be represented by a string composed of 4 letters. Enormous laboratory effort

has been made to compile and compare genetic information from living organisms. One

of the tasks is to measure the similarity of two strings. Among others, approximate string

matching is a popular technique in this context. There are two reasons why approximate

matching is important. On one hand, both measurement, e.g. sequencing, errors and fuzzy

nature of underlying molecular processes, e.g. hybridization may occur despite mismatches.

On the other hand, ”redundancy in biology with evolutionary processes resulting in closely

related, yet, different sequences that require approximate matching in order to detect their

relatedness and identify variable as well as conserved features that may reveal fingerprints

of structure and function”(Meller, 2004).

To illustrate the concepts, consider the sequence GCGAT and GGATT. The exact con-

secutive matching will give us one match as follows.

G C G A T

l
G G A T T

Whereas comparisons allowing mismatches will yield two matches.

G C G A T

l l
G G A T T

In biology, the term, indels, is an abbreviation of insertions and deletions, referring to DNA

mutations. If indels are allowed, we will have 4 matches, i.e.

G C G A T −
l l l l
G − G A T T

Given 2 strings of length n and m, their comparison is summarized as an n×m matrix, and
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a matching between letters in positions i and j is traditionally represented by a dot in the

corresponding position in the matrix.

1.2 The problem

A natural question arising from these comparisons is how likely a comparison detects an

unusual congruence shared among the strings. Such statistical problems are naturally cast

in the usual hypothesis-testing context in which we need to compute the tail probability

(the biologists’ p − value) for a seemingly unusual event(Arratia, 1990). To facilitate our

discussion, we formulate the problem as follows.

Let A1, · · · , An and B1, · · · , Bn be independently chosen from a common alphabet {1, 2, . . . , d}
according to a common distribution {µl; l = 1, . . . , d}. Choose a test value t and compute,

Mn(t) = max
1≤i,j≤n−t+1

t−1∑
k=0

1{Ai+k = Bj+k}, (1)

the largest number of matches witnessed by any comparison of length t substrings. What is

the distribution of Mn(t)? It is possible to answer this question via Bonferroni inequality. But

this technique requires computing arbitrarily large moments, which is tedious. In this respect,

the reader is referred to Watson (1954), and Karlin and Ost (1987) for relevant investigation.

As a tool for asymptotic analysis, the Chen-Stein method provides an promising alternative

to the challenge.

Enormous amount of research has been and is being conducted on DNA and protein

sequence matching. In the context of applying the Chen-Stein method to investigate distri-

butional properties, we provide a list of relevant literatures in what follows.

For the longest match between 2 random sequences when only mismatches are allowed,

see Arratia, Gordon and Waterman (1990). Neuhauser (1994) extends the results to cover

indels. To generalize matches and indels to scoring functions, Arratia, Gordon and Waterman

(1988)derived an Erdö-Rényi type strong limit theorem for the highest-scoring matching

subsequence between 2 sequences. Karlin and Altschul (1990) generalized the results to more

general scoring. Waterman and Vingron (1994) extend Poisson approximation techniques

using the Aldous clumping heuristic to estimate statistical significance of observed scores.

Regarding the longest matching subsequences of fixed length between 2 sequences when a
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certain number of mismatches are allowed, Marianne Mansson (2000) used the Chen-Stein

method to bound the total variation distance between the distribution of a suitably chosen

compound Poisson distribution.

2 The Chen-Stein Method

2.1 Introduction to the Chen-Stein method

Charles Stein(1972) first introduced the method to prove approximation theorems in proba-

bility theory in the context of normal distribution. Chen, Barbour and others adapted and

developed the method for other probability distributions including Poisson and compound

Poisson.

To get an idea what the Chen-Stein method is, consider the following situation. Let

(S,S, µ) be a probability space, let χ be the set of measurable functions h : S → R, and

let χ0 ⊂ χ be a set of µ−integrable functions. Suppose we want to compute
∫

S
hdµ, but

µ is so complicated that the calculation is very forbidding. If we allow our solution to be

approximately right and trade for a much easier situation, a natural way is to construct

another probability measure µ0 which, ideally, is much simpler than µ while still close to

µ. The goal of the Chen-Stein method is to provide a systematic way to construct such

a measure. Specifically, choose a probability measure µ0 on (S,S) such that all h ∈ χ0

are µ0-integrable, and Eµ0h is easy to compute. Find a set of functions F0 and a mapping

T0 : F0 → χ, such that, for each h ∈ χ0, the equation

T0f = h−
∫

S

hdµ0 (2)

has a solution f ∈ F0. Then, ∫
S

(T0f)dµ =

∫
S

hdµ−
∫

S

hdµ0.

T0 is called a Stein operator for the distribution µ0, and equation (2) is called a Stein

equation, with solution f referred to as a Stein transform of h. The key is to choose a Stein

operator in such a way that good estimates of
∫

S
(T0f)dµ can be obtained.
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There are 2 standard methods to construct a Stein operator. The first was proposed by

Stein (1986), which consists of the following 3 steps.

1. Choose a probability space (Ω,F ,P) containing an exchangeable pair of random vari-

ables (X,Y ) (i.e., their joint distribution should be permutation invariant) with marginal

distribution µ0.

2. Choose a mapping: α : F → F where F is the space of measurable antisymmetric

functions F : S2 → R such that E(|F (X, Y )|) < ∞.

3. Take T0 = T ◦ α, where T : F → χ is defined, for some version of conditional expecta-

tion, by

(TF )(x) = E(F (X, Y )|X = x) ∀x ∈ S

This procedure implies,∫
S

(T0f)dµ0 =

∫
S

(TF )dµ0 = E(F (X, Y )) ∀f ∈ F0,

where F = αf . By the antisymmetry of F ,∫
S

(T0f)dµ0 = 0 ∀f ∈ F0. (3)

The second approach to construct Stein operators was proposed by Chen (1998), which

makes use of adjoint operators. Specifically, choose a linear mapping: A : F0 → L2(S, µ0) so

that the constant function 1 on S is in A∗. Then,∫
S

(Af)dµ0 =

∫
S

(A∗1)fdµ0 ∀f ∈ F0

Set T0 = A− (A∗1)I.

Further, we see that,∫
S

(T0f)dµ0 =

∫
S

(Af)dµ0 −
∫

S

(A∗1)fdµ0 = 0 ∀f ∈ F0. (4)

Equations (3) and (4) are called Stein identity which is a necessary condition for a Stein

operator.
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For Poisson distribution, the Stein operator is,

(T0f)(k) = λf(k + 1)− kf(k) (5)

It has the property that, for any random variable W , E(T0f)(W ) = 0 for all f such that

supk k|f(k)| < ∞, if and only if W ∼ Po(λ). Now, let W be a sum of Bernoulli random

variables, each with small expectation. Then, it is natural to expect W approximately

follows a Poisson distribution if E(T0f)(W ), i.e., a measure of error, is small. The advantage

of the Chen-Stein method is that it translates the properties of the testing function, h, into

desirable properties of f through the Stein operator (5).

The research on the Chen-Stein method has been fruitful since it was first proposed

by Stein. For theoretical developments, see Barbour and Eagleson, 1983, 1984; Barbour

and Hall, 1984a; Barbour, 1987; Arratia, Goldstein and Gordon, 1989; Barbour, Holst and

Janson, 1988b. For applications and examples, see Barbour, 1982; Bollobas, 1985; Holst,

1986; Janson, 1986; Stein, 1986; Barbour, Holst and Janson, 1988; Heckman, 1988; Barbour

and Holst, 1989; and Holst and Janson, 1990.

To facilitate our discussion, we cite some of the relevant results on approximation error

here.

We will use the following notions. There is a finite or countable index set I. For each

α ∈ I, let Xα be a Bernoulli random variable with pα = P (Xα = 1) > 0. Let

W =
∑
α∈I

Xα and λ = EW. (6)

We assume λ ∈ (0,∞). Z will denote a Poisson random variable with the same mean as W.

For each α ∈ I, suppose we have chosen Bα ⊂ I with α ∈ Bα. Bα is a neighborhood of α

consisting of the set of indices β such that Xα and Xβ are dependent.

Define

b1 =
∑
α∈I

∑
β∈Bα

pαpβ, (7)

b2 =
∑
α∈I

∑
α 6=β∈Bα

pαβ, where pαβ = E[XαXβ], (8)
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and

b3 =
∑
α∈I

E|E{Xα − pα|σ(Xβ : β /∈ Bα)}| (9)

Loosely, b1 measures the neighborhood size, b2 measures the expected number of neighbors

of a given occurrence and b3 measures the dependence between an event and the number of

occurrences outside its neighborhood.

Computing b1 and b2 usually involves the same work as computing the first and second

moments of W . In applications where Xα is independent of the collection Xβ : β /∈ Bα, the

term b3 = 0. When b3 = 0, b2 − b1 = E(W 2) − E(Z2). Thus when b3 = 0 and b1 is small,

the upper bounds on total variation distance given in the theorems below are comparable to

the discrepancy between the second moment of W and that of the Poisson.

When b1, b2 and b3 are all small, then we have the following theorems (Arratia, Goldstein

and Gordon, 1989).

Theorem 1. Let W =
∑

α∈I Xα be the number of occurrences of dependent events,and

let Z be a Poisson random variable with EZ = EW = λ < ∞. Then

‖ L(W )− L(Z) ‖

≤2

[
(b1 + b2)

1− e−λ

λ
+ b3(1 ∧ 1.4λ−0.5)

]
≤2(b1 + b2 + b3),

(10)

and

|P (W = 0)− e−λ|

≤(b1 + b2 + b3)(1− e−λ)/λ

<(1 ∧ λ−1)(b1 + b2 + b3),

(11)

Theorem 1 says the total number W of events is approximately Poisson.
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The next theorem is a process version of the above theorem.

Theorem 2. For α ∈ I,let Yα be a random variable whose distribution is Poisson

with mean pα, with the Yα mutually independent. The total variation distance between the

dependent Bernoulli process X ≡ (Xα)α∈I , and the Poisson process Y on I with intensity

p(.), Y ≡ (Yα)α∈I , satisfies

‖ L(X−Y) ‖≤ 2(2b1 + 2b2 + b3). (12)

Theorem 2 implies the locations of the dependent events approximately form a Poisson

process.

Theorem 3 compares the dependent Bernoulli process X with an independent Bernoulli

process X′. Since
∑

α p2
α ≤ b1, Theorem 3 implies that if the Chen-Stein method succeeds

with b1, b2 and b3 all small, then in the sense of total variation distance the dependent X

process is close to being independent.

Theorem 3. For α ∈ I, let X ′
α have the same distribution as Xα, with the X ′

α mutually

independent. The total variation distance between the dependent Bernoulli process X ≡
(Xα)α∈I , and the independent Bernoulli process X′ ≡ (X ′

α)α∈I having the same marginals,

satisfies

‖ L(X)− (X′) ‖≤ 2(2b1 + 2b2 + b3) + 2
∑

p2
α (13)

Theorem 3 The dependent events are almost indistinguishable from a collection of inde-

pendent events having the same marginal probabilities.

2.2 Birthday Problem

The birthday problem can be found Chen (1975a), Diaconis and Mosteller (1989), Janson

(1986), Holst (1986) and Stein (1987).

Assume birthdays of n individuals are independently and uniformly distributed over d

days in a year. Our interest is computing the probability that k people share the same

birthday (k−way coincidence) occurring at once.
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Let {1, 2, · · · , n} denote a group of n people, and let I = {α ⊂ {1, 2, · · · , n} : |α| = k}.
For example, to compute the probability that there is at least one occurrence of 2 people

share the same birthday, we set k = 2 and I is the set of all pairs of people among whom

a two-way coincidence could occur. Let Xα be the indicator of the event that the people

indexed by α share the same birthday. The total number of coincidences is, W =
∑

α∈I Xα.

Because W is the sum of many Bernoulli random variables, each with small success

probability pα = d1−k, it is reasonable to approximate W as a Poisson random variable

Z with mean λ = EW =
(

n
k

)
d1−k. Thus, the probability of no birthday coincidence is

approximately

P (Z = 0) = e−λ = exp

{
−
(

n

k

)
d1−k

}
.

For the special case when k = 2, d = 365, n = 23 is the least number of people required to

make Pr(at least one coincidence) > 0.5, which can be verified by the fact that
(
23
2

)
/365−

ln(2) = 0.6931507− 0.6931472 = 0.0000028.

Now we employ Theorem 1 to bound the error the approximation. Since α ∩ β implies

Xα and Xβ are independent, we define

Bα = {β ∈ I : α ∩ β 6= ∅}

. With this choice,

E|E{Xα − pα|σ(Xβ : β /∈ Bα)}| = 0

by independence; hence b3 = 0. Further,

b1 = |I||Bα|p2
α

=

(
n

k

){(
n

k

)
−
(

n− k

k

)}
d2−2k.

(14)

In the case k = 2, since Xα and Xβ are pairwise independent, pαβ = pαpβ. Therefore,

b2 = |I|(|bα| − 1)pαβ =
b1(|bα| − 1)

|Bα|
.

Consequently, the bound for the error in approximating P (W = 0) by e−λ in the case

k = 2 is,
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|P (W = 0)− e−λ| ≤ (b1 + b2)
1− e−λ

λ

=
1

d2

(
n

2

)
(4n− 7)

1− e−λ

λ
.

When k=3, it is much more difficult to compute the exact probability of a 3-way coin-

cidence. Nevertheless, we can easily apply Poisson approximation to the problem. Suppose

we want to compute the probability that in a group of 50 people, there is at least one triple

coincidence. We have λ =
(

n
3

)
/d2 and hence the desirable probability is about

1− P (W = 0) = 1− e−λ = 1− 0.863 = 0.137.

To obtain a bound on the error, we proceed as follows.

b1 = |I||Bα|p2
α

=

(
n

3

){(
n

3

)
−
(

n− 3

3

)}
d−4,

and, for a given α, breaking up Bα − {α} into those β such that |β ∩ α| = 1 and those

for which |β ∩ α| = 2, we see

b2 = |I|
{

3

(
n− 3

2

)
d−4 + 3(n− 3)d−3

}
.

This shows the approximation above has an error of no more than

(b1 + b2)(1− e−λ)/λ = 0.0597,

so that 0.803 ≤ P (W = 0) ≤ 0.923.

To assess the bound on the Chen-Stein error, we now derive the formula for the exact

probability when k = 3. In order for there to be no triple coincidence, the d days of the

year must be partitioned into h days when there are no birthdays, i days on each of which

a single individual was born, and j days on each of which exactly 2 individuals share a
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birthday. A factor of n!/2j is needed to count the number of arrangements of n persons into

such a configuration of i + j days. Now we have,

P (W = 0) = d−n
∑

i+2j=n

(
d

h, i, j

)
n!

2j
.

For n = 50 and d = 365, we have that P (W = 0) = 0.8736, for an actual error of 0.8736 −
0.9632 = 0.0104 < 0.0597, the Chen-Stein bound on the error.

3 Application

In this section, we will compare the results from the theoretical prediction based on the

Chen-Stein method, computer simulation and real data. We first describe the setup for each

situation, and the results will follow in section 4.

3.1 Theoretical prediction

According to the above introduction to the Chen-Stein method, the main idea of the theoret-

ical prediction is to approximate the actual distribution with a Poisson distribution through

proper formulation of the problem.

To help us understand our approach to solve the problem given above, let’s first consider

a closely related problem (Arratia et al, 1990).

Let {Zi i ∈ Z} be an independent coin tosses with p = P (Zi = 1) = 1− P (Zi = 0), and

let Sn;t be the maximum number of heads occurring in a window of length t, starting within

the first n tosses, Sn;t ≡ max1≤i≤n(Zi + · · · + Zi+t−1). We are interested in the distribution

of Sn;t.

For integer α and positive integers s ≤ t, define indicators

Yα ≡ Y (α, s, t) ≡ 1

[
s =

t−1∑
k=0

Zα+k

]
,

Intuitively, Yα is the indicator that a window of length t containing s heads starts at α.
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It is easy to see that Yα and Yα+1 are dependent, and such windows may overlap. We say

these windows occur in clumps, which would make the analysis directly based on Yα very

demanding. Instead, we will work with the number of clumps by using the Poisson clumping

heuristic (Aldous, 1989). Define

Xα ≡ X(α, s, t) ≡
t∏

j=1

(1− Yα−j).

Let I ≡ {1, 2, · · · , n}, and define

W ≡ W (n, s, t) ≡
∑
α∈I

Xα.

In another word, Xα is the indicator that a clump starts at α. The random variable W is

the number of clumps that begin within the first n tosses.

We now present a result on EY1

EX1
, which can be roughly interpreted as the clump size.

The proof which employs the ballot theorem(c.f. Feller (1968)) can be found in Arratia et

al (1990).

Lemma 1. Let s and t be positive integers with s ≤ t, and let a ≡ s/t. Then,

a− p ≤ EX1

EY1

≤ a− p + 2(1− a)P

(
t∑

j=1

Zj > s

)
≤ a− p + 2(1− a)e−tH(a,p)

(15)

where

H(a, p) = alog

(
a

p

)
+ (1− a)log

(
1− a

1− p

)
.

Apart from ”boundary effect,” the event {Sn;t < s} agrees with the event {W = 0}. The

error in this approximation can be controlled by observing that W 6= 0 ⊂ {Sn;t ≥ s}, and

{Sn;t ≥ s, W = 0} ⊂ {Y1 + · · · , +Yt > 0} ∪ {Z1 + · · · , +Zt > s}.

Hence,

0 ≤ P (W = 0)− P (Sn;t < s) ≤ tEY1 + P (Z1 + · · · , +Zt > s). (16)

The Chen-Stein method can be applied to establish a Poisson approximation for W . Let

λ ≡ EW . The indicator random variable Xα is measurable with respect to the 2t coins Zj
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at α− t, . . . , α + t− 1. Thus, we define the neighborhood,

Bα ≡ {β ∈ I : |α− β| < 2t} for α = 1 to n,

so that b3 = 0 and b1 < (4t−1)λEX1. If |α−β| ≤ t, then E(XαXβ) = 0, but if t < |α−β| <
2t, then we can only conclude that E(XαXβ) ≤ XαXβ, so that b2 < 2tλEY1.

Using Theorem 1, we have

|P (W = 0)− e−EW | ≤ (b1 + b2)(1 ∧ 1/λ)

≤ 2tλ(2EX1 + EY1)(1 ∧ 1/λ)

≤ 6tEY1.

(17)

Combining (16) and (17), and rewriting EY1 in term of Zi, we have

|P (Sn;t − e−EW )| ≤ 7tP (Z1 + · · ·+ Zt = s) + P (Z1 + · · ·+ Zt > s). (18)

Now, λ ≡ λ(n, s, t) ≡ EW ≡ nEX1, which, combined with lemma 1, gives,

s

t
− p ≤ EW

nP
(∑t

j=1 Zj = s
) ≤ s

t
− p + 2

(
1− s

t

)
P

(
t∑

j=1

Zj > s

)
. (19)

Summarizing these findings, we have the following theorem.

Theorem 4. Let {Zi i ∈ Z} be an independent sequence with p = P (Zi = 1) = 1−P (Zi =

0), and let Sn;t ≡ max1≤i≤n(Zi + · · ·+Zi+t−1). For all positive integers n, s, t, with s ≤ t and

s/t > p, P (Sn;t < s) is approximately exp
(
−n
(

s
t
− p
)
P (Z1 + · · ·+ Zt = s)

)
, with the error

in this approximation controlled by (18) and (19).

For the problem of comparing 2 sequences, i.e. the sequence matching problem, the

derivation is more involved. We present the net result in Theorem 2 and the interested

reader is referred to Arratia et al (1990).

Theorem 5. Let Mn(tn) be the maximum number of matches between a word of length

tn taken from A1 . . . An and a word of length tn from B1 . . . Bn, with independent letters from

17



alphabet {1, . . . , d} according to distribution µl, l = 1, . . . , d. Then,

P{Mn(tn) < s} − exp

(
−
(

s

tn
− p

)
n2P{binomial(tn, p) = s}

)
→ 0, (20)

as n →∞ whenever tn/ln(n2) → c > 1/ln(1/p) and c < ∞, where p =
∑d

l=1 µ2
l

For the DNA sequence of Indian corn, p =
∑4

l=1 µ2
l , where µ = (0.3083, 0.1917, 0.1929, 0.3071)

is the probabilities for the alphabet {a, c, g, t} which is calculated from the sequence.

Roughly, this result can be interpreted in the following steps.

1. There are about n2 blocks of length t requiring comparison.

2. The approximation theory and techniques, e.g. declumping reduces the effective num-

ber of comparisons to (s/tn − p)n2.

3. Multiplying the number of comparisons by the binomial probability gives the expecta-

tion.

4. The Poisson probability of seeing zero events gives the desirable approximation.

3.2 Real data result

The complete chloroplast genome of the Indian corn Zea Mays, was retrieved from the

GenBank database. The genome is given as a sequence of 140,325 letters from the alphabet

{a, c, g, t}. The sequence was cut into 274 blocks of exactly 512 letters with the remaining

letters ignored. A simple random sample of 200 pairs from the population of all block pairs

was taken, and the probabilities of maximum number of matches were computed.

3.3 Computer simulation

Assuming the letters generated independently from the alphabet {a, c, g, t} with probability

µ = (0.3083, 0.1917, 0.1929, 0.3071). Specifically, we first generated a sequence of 140,325

letters, and computed the desirable probabilities as if the sequence is real as above.
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4 Summary and Discussion

In this section, we present the results from the above three setups and evaluate the perfor-

mance of the theoretical prediction. Table 1 summarizes these results and figure 1 visualizes

the comparisons.

Table 1: classical table

p̂ 99% CI*
Real 0.124 (0.079, 0.170 )
Sim. 0.134 (0.088,0.187)

14

Pred. 0.092 —
Real 0.529 (0.461, 0.598 )
Sim. 0.630 (0.561,0.699)

15

Pred. 0.618 —
Real 0.290 (0.227, 0.352)
Sim. 0.193 (0.136,0.249)

16

Pred. 0.253 —
Real 0.043 (0.015,0.071)
Sim. 0.040 (0.012,0.068)

17

Pred. 0.035 —
Real 0.0136 (0.000, 0.029)
Sim. 0.000 —

18

Pred. 0.029 —

*: Bonferroni adjusted for multiple comparisons.

Overall, the main trends of the 3 results are consistent in order of magnitude, which

indicates the Poisson approximation gives a good prediction of the big picture of the empirical

distribution.

4.1 Simulation vs. prediction

On a gross basis, the simulated distribution is well approximated by the Poisson approxima-

tion, but its fine structure is not very well predicted. The shape of the predicted distribution

has a thinner left tail and thicker right tail than the simulated distribution. This is not so

surprising, given that the binomial distribution has a heavier right tail and lighter left tail

than the extreme value.
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Figure 1: The results from Poisson approximation, real data and computer simulation. The
99% confidence intervals for the real data are also plotted.

Figure 2: The results from Poisson approximation and computer simulation. The 99%
confidence intervals for the simulation are also plotted.
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Figure 3: The results from Poisson approximation and real data. The 99% confidence
intervals for the real data are also plotted.

Testing the equality of the simulated and predicted distribution using Pearson’s chi-

square test(see appendix) gives p − value = 0.022, which implies the difference between

these two distributions is not statistical significant at the 99% confidence level.

4.2 Real data result vs. prediction

Compared with the simulated distribution, the empirical distribution from the real data

is less concentrated. The Poisson approximation again roughly captures the shape of the

empirical distribution.

The discrepancy between the theoretical prediction and the real data result gets larger

when the target probabilities increases. In particular, the theoretical prediction differs the

most from the empirical result when the number of matches equals 15, where the probability

reaches the maximum.

The likelihood ratio test(see appendix) statistic will be referred to a χ2
4 distribution and

find the p−value. Our result shows that p−value < 0.001, which indicates that at least one
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estimated real probability is different from the predicted probability. To investigate which

categories are significantly different, we check table 1. Note that only at the richest matches,

15, is the difference statistically significant where the 99% confidence interval constructed

from the real data does not contain the predicted probability. It is worth noticing that we

are most likely interested in unusually large number of matches in practice because these

matches contains more genetic information than rich matches.

22



5 References

Aldous, D. (1989). Probability Approximations via the Poisson Clumping Heuristic. Springer,

New York.

Meller, J., (2004). Course lecture for Introduction to Bioinformatics.

http://folding.cchmc.org/intro2bioinfo/intro2bioinfo.html.

Arratia, R., Goldstein, L. and Gordon, L. (1990). Poisson Approximation and the Chen-Stein

Method. Statistical Science, Vol. 5, No.4, 403-434.

Arratia, R., Gordon, L. and Waterman, M. S. (1986). An extreme value distribution for

sequence matching. Ann. Statist. 14971-993.

Arratia, R., Gordon, L. and Waterman, M. S. (1990). The Erdös-Rényi Law in distribution,
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6 Appendix

6.1 Multinomial test

Multinomial test tests the null hypothesis that the parameters of a multinomial distribution

equal some specified values.

Let x = (x1, . . . , xk) be a random sample from a multinomial distribution, Mult(N, p1, . . . , pk).

Suppose we are interested in testing H0 : pi = p0
i , ∀i = 1, . . . , k vs. Ha : pi 6=

p0
i , for at least one i ∈ {1, . . . , k}

We first introduce the likelihood ratio test. Under H0, the exact probability of the

observation x is,

P0(x) = N !
k∏

i=1

(p0
i )

xi

xi!
.

Under Ha when pi = p̂i, i = 1, . . . , k where p̂i = xi

N
, the maximum likelihood estimate, the

exact probability of the observation x is,

Pa(x) = N !
k∏

i=1

(p̂i)
xi

xi!
.

The likelihood ratio test statistic is given by,

−2ln(LR) = −2
k∑

i=1

xiln(pi/p̂i).

This statistic asymptotically follows a chi-square distribution with k− 1 degrees of freedom.

The hypotheses can be tested using the Pearson’s chi-square test statistic,

χ2 =
k∑

i=1

(xi − Ei)
2

Ei

where Ei = Np0
i , i = 1, . . . , k is the expected count under H0. As the likelihood ratio

statistic, χ2 also asymptotically follows a chi-square distribution with k − 1 distribution.

For finite sample, the −2ln(LR) converges to the chi-square distribution from above(Lawley,
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1956), whereas the chi-square test statistic converges from below. This implies that the

likelihood ratio test tends to inflate type I errors, i.e. false positives, whereas the Pearson’s

chi-square test deflate them.

Lawley, D. N. (1956). ”A General Method of Approximating to the Distribution of

Likelihood Ratio Criteria”. Biometrika 43: 295303.

6.2 The ballot theorem

Suppose that candidates A and B are in an election. A receives a votes and B receives b

votes, with a > b. Then there are a−b
a+b

(
a+b
a

)
out of

(
a+b
a

)
voting configurations so that A

maintains a lead throughout the counting of the ballots.

A more general version of the theorem is as follows,

Suppose a > kb for some positive integer k. There are a−kb
a+b

(
a+b
a

)
out of

(
a+b
a

)
ways so

that A maintains a lead throughout the counting of the ballots.
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