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Abstract

A new classifier, QIFC, is proposed based on the quadratic inference function
for longitudinal data. Our approach builds a classifier by taking advantage
of modeling information between the longitudinal responses and covariates for
each class, and assigns a new subject to the class with the shortest newly de-
fined distance to the subject. For finite sample applications, this enables one to
overcome the difficulty in estimating covariance matrices while still incorporat-
ing correlation into the classifier. The proposed classifier only requires the first
moment condition of the model distribution, and hence is able to handle both
continuous and discrete responses. Simulation studies show that QIFC outper-
forms competing classifiers, such as the functional data classifier, support vector
machine, logistic regression, linear discriminant analysis, the naive Bayes clas-
sifier and the decision tree in various practical settings. Two time-course gene
expression data sets are used to assess the performance of QIFC in applications.

Keywords: QIFC, Classification, Linear Discriminant Analysis, Longitudinal
Data Analysis, Quadratic Inference Function, Quadratic Distance

1. Introduction

In many longitudinal biomedical experiments, such as the gene expression
microarray studies on yeast cells [19, 6] and fruit flies [1, 12], the gene expressions
of thousands of genes are repeatedly measured over multiple time-points. These
genes are assumed to be associated with a set of pre-defined biological functions,
and it is of scientific interest to identify which genes are associated with which
biological functions. A classifier for longitudinal data is called for to address
such a problem. In addition, the sample sizes for most longitudinal studies are
small to moderate due to the cost and complexity of the longitudinal design.
Hence, a desirable longitudinal classifier should also work effectively for finite
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sample applications. As high throughput technologies become increasingly cost-
effective, longitudinal studies will be conducted in more research fields, and
more features or covariates will be collected at each time point. Therefore,
there is an emerging demand for longitudinal classification tools to mine such
high-dimensional longitudinal data.

Classifications for single point data are well developed, but these methods
might not be effective for classifying longitudinal data. For longitudinal data,
Choi [4] proposes a mixed model; Bagui and Mehra [2] develop a multi-stage
nearest neighbor classification rule; Brown et al. [3] apply support vector ma-
chine (SVM); Liang and Kelemen [11] propose regularized neural networks; Lee
[8], Rossi and Villa [16], Rossi and Villa [17] and Park et al. [14] apply the
functional SVMs; Müller [13] uses functional principal component scores; Leng
and Müller [9] use logistic regression; De la Cruz-Meśıa et al. [5] apply semi-
parametric Bayesian classification based on dependent Dirichlet processes; and
Schmah et al. [18] compare several classification methods for longitudinal fMRI
studies and identify the adaptive quadratic discriminant function and the sup-
port vector machine as the best classifiers. Functional data classifiers [7] are
also applicable to most longitudinal data.

We propose a new classification method, QIFC, for longitudinal data based
on the quadratic inference function (QIF) which builds a semi-parametric model.
Our approach builds a classifier by taking advantage of modeling information
between responses and covariates of the subjects within each class, and assigns
a new subject to the class with the shortest newly defined distance to the sub-
ject. Our approach overcomes the difficulty in estimating covariance matrices as
in linear discriminant analysis (LDA) while still being able to incorporate into
the classifier the correlation among multiple observations on the same subject.
We use simulation to compare QIFC to commonly used classifiers including
the functional data classifier, SVM, logistic regression, linear discriminant anal-
ysis, the naive Bayes classifier and the decision tree. The proposed classifier
shows advantages for both continuous and discrete response data for various
settings. We also provide asymptotic optimality theory for QIFC. Applications
to time-course gene expression data indicate that the generalization error of
QIFC is improved compared to other classifiers when the sample sizes are small
to moderate.

The paper is organized as follows. We describe QIFC in Section 2, and
provide the theoretical results in Section 3. Simulation studies and applications
follow in Section 4 and Section 5, respectively. Section 6 summarizes our results
and provides a brief discussion.

2. QIFC

For longitudinal data, let yi(t) be a response variable and xi(t) be a p × 1
vector of covariates, measured at time t, t = t1, · · · , tq for subject i, i = 1, · · · , N .
We assume that the model satisfies the first moment model assumption

µi(tj) = E{yi(tj)} = µ{xi(tj)′β}, (1)
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where µ(·) is a known inverse link function and β is a p-dimensional parameter
vector. The quasi-likelihood equation [21] for longitudinal data is

N∑
i=1

µ̇′iV
−1
i (yi − µi) = 0,

where Vi = V ar(yi), yi = (yi(t1), · · · , yi(tq))′, µi = (µit1 , · · · , µitq )′, and µ̇i =
∂µi/∂β. In practice, Vi is often unknown, and the empirical estimator of Vi
based on sample variance could be unreliable, especially when the sample size is
small relative to the number of variance components in Vi. Liang and Zeger [10]
introduce generalized estimating equations to substitute Vi by assuming Vi =

A
1/2
i RA

1/2
i , where Ai is a diagonal marginal variance matrix and R is a common

working correlation matrix, which only involves a small number of nuisance
parameters. The advantage of the GEE approach is that the GEE estimator
of the regression parameter is consistent, even if the working correlation R is
misspecified. However, the GEE estimator is not efficient within the same class
of estimating functions when R is misspecified.

Qu et al. [15] introduced the quadratic inference function by assuming that
the inverse of the working correlation can be approximated by a linear combi-
nation of several basis matrices, that is,

R−1 ≈ a1M1 + · · ·+ amMm,

where Mi’s are symmetric matrices. We observe that the generalized estimat-
ing equation is an approximate linear combination of the components in the
estimating functions,

ḡN (β) =
1

N

N∑
i=1

gi(β) =
1

N


∑N
i=1(µ̇i)

′A
−1/2
i M1A

−1/2
i (yi − µi)

...∑N
i=1(µ̇i)

′A
−1/2
i MmA

−1/2
i (yi − µi).

 (2)

Hence, the advantage of this approach is that it does not require estimation of
linear coefficients ai’s which can be viewed as nuisance parameters.

Since the dimension of (2) is larger than the number of parameters, we cannot
set each component in (2) to be zero to solve for β. Instead we estimate β by
setting ḡN as close to zero as possible, in the sense of minimizing the quadratic
function,

β̂ = arg min
β
ḡ′NΩ−1ḡN ,

where Ω = V ar(gi). In practice, Ω is often unknown, but can be estimated

consistently by W̄N = N−1
∑N
i=1 gig

′
i. The quadratic function,

QN (β) = Nḡ′NW̄
−1
N ḡN , (3)

is called the quadratic inference function [15] since it provides an inference
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function for the regression parameters.
To develop the new classifier, we first define a new distance measure based

on the estimates from QIF. For a new subject, y∗, its distance to class c, c =
1, . . . , C, where C is the total number of classes, is defined as

QDc(y) := g′cW
−1
c gc. (4)

In (4), Wc is the estimated covariance matrix from the training data in class c,
and gc is obtained as

gc =


(ˆ̇µc)

′Â
−1/2
c M1Â

−1/2
c (y∗ − µ̂c)

...

(ˆ̇µc)
′Â
−1/2
c MmÂ

−1/2
c (y∗ − µ̂c)

 , (5)

where µ̂c is the estimated mean of class c, Âc is the estimated diagonal marginal
variance matrix for class c, and ˆ̇µc is the estimate of µ̇c as in (2). The following
algorithm summarizes the classification rule for classifying y∗.

Algorithm

1. For each class, fit a semi-parametric regression model using
QIF.

2. Compute QDc(y
∗) for each class c, c = 1, · · · , C.

3. Let m = arg mincQDc(y
∗).

4. Assign the new subject y∗ to class m.

For each class, step 1 models the longitudinal data and captures the mean
function and correlation information within the same class. Step 2 computes
the quadratic distance QD of the new subject to each class. Steps 3 and 4
assign the new subject to the class with the shortest distance. We call the
new classifier QIFC since it builds on the model information derived from the
quadratic inference function.

3. Theoretical Properties

We provide a couple of theoretical results for QIFC. Specifically, we will
provide the optimality property of QIFC in Theorem 1, and the upper bound
to the generalization error(GE) in Lemma 1.

To develop the statistical theory, we reformulate gc in (5) as,

gc = T̃ ′c (y∗ − µ̂c) ,
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where T̃ ′c →p T
′
c and

T ′c =


(µ̇c)

′A
−1/2
c M1A

−1/2
c

...

(µ̇c)
′A
−1/2
c MmA

−1/2
c

 .

Note that the above convergence holds since both the GEE and QIF esti-
mators are consistent.

Theorem 1. Under the first moment assumption in (1) and suitable regular-
ity conditions, QIFC based on T ′cyi is asymptotically optimal, i.e., the lowest
misclassification error rate can be achieved, if

T ′cyi d µi + Σ
1
2
i u and |Σi| = |Σj |, i, j = 1, . . . , C, (6)

where u is a random vector with probability density function f0(u′u) such that
f0(·) is a strictly decreasing density function on [0,∞ ).

The proof of Theorem 1 is provided in the Appendix.
Remark: The requirement of |Σi| = |Σj | in Theorem 1 is often approxi-

mately satisfied since log|Σi| tends to be close in a logarithmic scale, even if Σi
are different [20]. Note that the requirement on the monotone density function
in Theorem 1 is satisfied for many statistical distributions commonly used in
practice including the Gaussian distribution.

We have shown that QIFC is asymptotically optimal under condition (6). In
the following discussion, we derive an upper bound for the generalization error,
which provides a guideline to assess the error rate in practice.

Lemma 1. Under the first moment assumption (1), for a two-class classifica-
tion problem with equal probability priors, the misclassification error rate for
QIFC is asymptotically bounded from above as follows,

P (misclassify a subject)

≤1

2

1

1 +

(
(µ2−µ1)′A2(µ2−µ1)−tr((A1−A2)Σ1)√

2tr((A1−A2)Σ1(A1−A2)Σ1)+4(µ′2−µ′1)A2Σ1A2(µ2−µ1)

)2

+
1

2

1

1 +

(
(µ1−µ2)′A1(µ1−µ2)−tr((A2−A1)Σ2)√

2tr((A2−A1)Σ1(A2−A1)Σ2)+4(µ′1−µ′2)A1)Σ1(A2(µ2−µ1)

)2 .

(7)

The above formula can be further simplified under more specific yet practical
circumstances. For example, it is not uncommon that yi from class c follows a
multivariate Gaussian distribution N(µc,Σ). Then the upper bound reduces to

1

1+

(
(µ2−µ1)′A(µ2−µ1)√
4(µ′2−µ

′
1)AΣA(µ2−µ1)

)2 if we denote T = T1 = T2 and A = A1 = A2.
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Lemma 1 indicates that if (µ2−µ1)′A(µ2−µ1) > 4, then the misclassification
error rate is strictly less than 0.5. Under such conditions, even though the upper
bound itself might be loose, the classifier is guaranteed to be better than random
guess.

4. Simulation Studies

We demonstrate the performance of QIFC on both continuous and discrete
responses through simulation studies.

4.1. Continuous Responses

We first use a simulation setting to assess the performance of our method for
continuous responses. We compare the performance of our method with that
of the functional data classifier, SVM, logistic regression, and LDA. We also
evaluate the performance of QIFC when the working correlation structure is
misspecified. In addition, we evaluate the classifier when µ̂c in (5) is replaced
by the GEE estimator. The error rate from Leave-One-Out cross validation
will be used to evaluate the classification performance. We use R version 2.5.0
to implement our method. Specifically, we use the package “e1071” for SVM
with the choice of the Gaussian kernel for which the C parameter is selected
through a grid search over 2−5, 2−4, . . . , 24, 25, and gamma fixed at 1. Package
“vgam” is used for the multinomial logistic regression, and “fda.usc” is used for
the functional data classifier, and the smoothing parameter is selected by the
generalized cross-validation “GCV.S” method.

4.1.1. Exchangeable Correlation Structure

For time-course gene expression data, two functional groups may follow a
similar pattern, except that one has a delay in time relative to another due to,
e.g., delay in regulation. To evaluate the performance of QIFC in this setting,
we design the following simulation.

Let Y = (Yt1 , · · · , Yt20
), t1 = −2, t2 = −1.92, · · · , t20 = 2 be the repeated

measurements from a subject in class 1, and

E(Yti) = 3ti + 4 sin(3ti)− 2 cos(3ti) + 2 sin(4ti), i = 1, · · · , 20.

We assume the correlation structure of the repeated measurements to be exchangeable,
and

Cov(Y) = σ


1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1


where σ = 100, and ρ = 0.85.

For class 2, let Y = (Yt1, · · · , Yt20) be the repeated measurements of a
subject with the same covariance matrix as class 1, except that

E(Yti) = 3(ti−0.5)+4 sin(ti−0.5)−2 cos(ti−0.5)+2 sin(2(ti−0.5)), i = 1, · · · , 20.

6



Efficient classification for longitudinal data

Clearly, the mean function of class 2 simply shifts to the right from class 1 by
0.5 units in time.

We generate 25 subjects from both class 1 and class 2. Figure 1 shows
a realization of the two hypothetical classes. To illustrate the discriminant
powers of the classifiers between the two classes, we generate a sequence of
new subjects, Y(s) = (Y (s)t1 , Y (s)t2 , · · · , Y (s)t20), with the same covariance
structure as above, and

E(Y (s)ti) = 3(ti−s)+4 sin(ti−s)−2 cos(ti−s)+2 sin(2(ti−s)), i = 1, · · · , 20,

where s ∈ [0, 0.5]. Note that Y(s) belongs to class 1 when s = 0, and belongs
to class 2 when s = 0.5. For each s ∈ [0, 0.5], we apply QIFC, the functional
data classifier, SVM, logistic regression and LDA to predict its class label. For
the LDA approach, we can use different non-singular covariance matrices to
evaluate its performance due to the small sample size. In this paper, we use a
diagonal matrix with the diagonal elements being the marginal variances. To
assess the robustness of QIFC to misspecification of the working correlation, we
also misspecify the correlation structure to be AR-1 and include the performance
of QIFC in the comparison. When we compare classifiers, a favorable classifier
should predict the closer class with high probability.

−2 −1 0 1 2

−2
0

−1
0

0
10

20
30

Time

Y

Figure 1: The simulation with 2 hypothetical classes and there is a time shift between them.
The solid curves are in class 1, and the dashed curves are in class 2.

Based on 500 replicates, Figure 2 shows the probability of predicting class 2
when the time shift moves from 0 to 0.5. In particular, for the two end points s =
0 and s = 0.5, the probability can be used to calculate the generalization error.
Figure 3 illustrate the upper bound as a function of the number of measurements
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on a subject and the time shift. Assuming equal class priors, Table 1 provides
the generalization error, the standard errors and the 95% confidence interval
of the generalization error for each classifier. Note the confidence interval is
constructed by assuming the number of errors to be the result from a binomial
experiment, the total number of trial being 500.
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Figure 2: Performance comparison using exchangeable correlation structure on continuous
responses.

Figure 2 indicates that QIFC, GEE and SVM have the highest sensitivity
for the closer class, followed in order by logistic regression, the functional data
classifier, and LDA is the least sensitive to the closer class. Note that all the
classifiers has little discriminant power when the time shift moves to s = 0.25;
and when the time shift s moves to either end, all the classifiers reach their
highest discriminant power. Overall, the sensitivity of QIFC to the closer class
is the highest, and misspecification of the working correlation does not appear
to significantly affect the performance of QIFC.

The upper bound is less than 0.5, which implies that QIFC is at least better
than random guess. Figure 3 implies that the upper bounds decreases as the
number of repeated measurements increases, and decreases rapidly as the time
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Table 1: Simulated generalization error, standard error and 95% confidence interval on con-
tinuous responses with exchangeable correlation structure.

Classification standard confidence
error error interval (95%)

SVM 0.202 0.018 (0.166, 0.237)
Logistic regression 0.018 0.006 (0.006, 0.030)

LDA 0.197 0.018 (0.162, 0.232)
Functional classifier 0.054 0.010 (0.034, 0.074)

GEE 0.004 0.003 (0.000, 0.010)
QIFC (misspecification) 0.004 0.003 (0.000, 0.010)

QIFC 0.004 0.003 (0.000, 0.010)
Upper bound 0.470 - -

U
pp

er
 b

ou
nd

 t
o 

th
e 

G
E

1

0.8

0.6

0.4

0.2

0
300

250 5200 4150 3
100 2

50
0 0

1
Number of measurements Time shift

Figure 3: Upper bound of the error rate with respect to time shift and number of repeated
measurements under an exchangeable correlation structure.

shift between the two classes increases. We note that the upper bound is derived
based on asymptotics, and may not be tight for finite-sample applications such
as this simulation study. However, examination of the upper as a function of
relevant parameters sheds light on the worst-scenario performance of QIFC as
the configuration of the classes changes.
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The above result is not entirely surprising according to existing learning
theory. It is well-known that under normality, LDA asymptotically outperforms
other classifiers including SVM and logistic regression. On the other hand,
for finite samples, the estimate of the covariance matrix may be singular, and
hence the performance of LDA may be unstable. However, QIFC does not
require direct estimation of the covariance matrix, and its performance is less
affected by such an issue.

4.1.2. AR-1 Correlation Structure

We next assess the performance of QIFC on continuous responses with the
same distribution assumption as above except that the responses assumes an
AR-1 correlation structure. To assess the robustness of QIFC to misspecifica-
tion, an exchangeable correlation structure plus an AR-1 component is used. In
practice, we commonly apply the QIF with a rich classes of working correlation
structures when we are not sure about the true structure. It is worth evaluating
this type of misspecification.

Based on 500 replicates, Figure 4 shows the probability of predicting class
2 when the time shift moves from 0 to 0.5. Figure 5 illustrate the upper bound
as a function of the number of measurements on a subject and the time shift.
Assuming equal class priors, Table 2 sets forth the generalization errors, the
standard error and the 95% confidence interval of the generalization error for
each classifier.

Table 2: Simulated generalization error, standard error and 95% confidence interval on con-
tinuous responses with correlation structure AR-1.

Classification standard confidence
error error interval (95%)

SVM 0.202 0.018 (0.167, 0.237)
Logistic regression 0.177 0.017 (0.144, 0.210)

LDA 0.199 0.018 (0.164, 0.234)
Functional classifier 0.174 0.017 (0.141, 0.207)

GEE 0.142 0.016 (0.111, 0.173)
QIFC (misspecification) 0.139 0.015 (0.109, 0.169)

QIFC 0.135 0.015 (0.105, 0.165)
Upper bound 0.909 - -

Overall, the order of performance does not change when the correlation
structure changes from exchangeable to AR-1. That is, QIFC performs the
best, and GEE does slightly worse, followed in order by logistic regression, the
functional data classifier, and SVM and LDA are the least sensitive to the closer
class. While the performances of QIFC, the functional data classifier, GEE and
logistic regression deteriorate, SVM and LDA are robust to such a change. SVM
is a model free classifier and expected to perform similarly when we change the
correlation structure. The performance of LDA depends on the estimates of
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Figure 4: Performance comparison using AR-1 correlation structure on continuous responses.

the mean responses and the diagonal elements of the covariance matrix, and
therefore changing the correlation structure should not affect its performance.
The other classifiers are complex functions of the covariance matrix, and their
performances are expected to be sensitive to the change of the correlation struc-
ture.

4.2. Binary Responses

By design, the application of QIFC is not restricted to continuous responses,
and we next evaluate the performance of QIFC on binary responses. We com-
pare the performance of QIFC with several commonly used classifiers, namely
the functional data classifier, the naive Bayes classifier, the decision tree, and
logistic regression.

We apply the naive Bayes classifier in R-package “e1071”, and the decision
tree in R-package “rpart.” R package “bindata” is used to generate the binary
data.
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Figure 5: Upper bound of the error rate with respect to time shift and number of repeated
measurements under an AR-1 correlation structure.

We generate two classes of subjects, and their mean functions satisfy

logit(E(Yti)) =

{
ti − 0.9sin(2ti) if Y is from class 1

ti + 0.3sin(2ti) if Y is from class 2,

i = 1, · · · , 100, t1 = −1, t2 = −0.98, · · · , t100 = 1, and Cov(Y ) has an AR-1
structure with correlation coefficient 0.8. The sample size for each class is 25.

To illustrate the discriminant powers of these classifiers, we generate a se-
quence of new subjects Y(c) = (Y (c)t1 , Y (c)t2 , · · · , Y (c)t100), c ∈ [−0.9, 0.3].
The new subjects also assume the same AR-1 correlation structure, and the
mean functions satisfy

logit(E(Y (c)ti)) = ti + csin(2ti), i = 1, · · · , 100.

When c = −0.9, Y(c) belongs to class 1; as c increases, Y(c) moves towards
class 2, and belongs to class 2 when c = 0.3. For each value c on a chosen grid
between -0.9 and 0.3, we classify the new subjects using QIFC, the functional
data classifier, the naive Bayes classifier, the decision tree and logistic regression.
Based on 500 replicates, Figure 6 displays the probability of the response taking
value 1 over time for the two classes, and Figure 7 plots the probability of
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predicting class 2 as c moves from -0.9 to 0.3. Assuming equal probability priors
for the two classes, Table 3 shows the generalization error, the standard errors
and the 95% confidence interval of the generalization errors for each classifier.

Figure 7 indicates that QIFC picks up discriminant power most rapidly
among the 4 classifiers when the new subject gets closer to either class. Logistic
regression and GEE have little discriminant power. The decision tree tends to
classify the new subject to class 2 more frequently than to class 1 over a wide
range of coefficient changes, whereas GEE biases toward class 1. The perfor-
mances of naive Bayes classifier and the functional data classifier are slightly
inferior to QIFC.

The theoretical upper bound indicates that QIFC is at least guaranteed to
be better than random guess. Similar to the previous results on continuous
responses, the upper bound decreases as the coefficient of the new subject or
the number of repeated measurements increases, as shown in Figure 8.

Table 3: Simulated generalization error, standard error and 95% confidence interval for the
decision tree, logistic regression, the naive Bayes classifier, and QIFC.

Classification standard confidence
error error interval (95%)

Decision Tree 0.424 0.022 (0.381, 0.467)
Logistic regression 0.481 0.022 (0.437, 0.525)

Naive Bayes 0.372 0.022 (0.330, 0.414)
GEE 0.444 0.022 (0.400, 0.488)

Functional classifier 0.354 0.021 (0.312, 0.396)
QIFC 0.330 0.021 (0.289, 0.371)

Upper bound 0.441 - -

5. Applications

Using two time-course gene expression data sets, we assess the performances
of the new classifiers and the functional data classifier, SVM, LDA and logistic
regression. Both applications involve multiclass classification. The error rate
from Leave-One-Out cross-validation will be used to evaluate their performance.

5.1. Yeast (Saccharomyces cerevisiae) Cell Cycle Data

The yeast cell microarray data contains the gene expression profiles of 2467
budding yeast (Saccharomyces cerevisiae) genes over 79 time points [19], includ-
ing the cell division cycle after synchronization by alpha factor arrest (ALPH,
18 time points), centrifugal elutriation (ELU, 14 time points), a cdc15 mutant
(CDC15, 15 time points), sporulation (SPO, 11 time points), shock by high
temperature (HT, 6 time points), reducing agents (D, 4 time points) and low
temperature (C, 4 time points). Eisen et al. [6] conducted a clustering analysis,
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Figure 6: Logit of probabilities over time for the two classes.
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Figure 8: Upper bound of the error rate with respect to the coefficients in the linear predictor
and number of repeated measurements.

and assigned these genes to different functional groups. Note these clusters were
obtained from the hierarchical clustering method, which does not make use of
the longitudinal nature of the data, and there is no apparent reason the results
is in the favor of QIFC.

To demonstrate the small sample performance of QIFC, we analyze the 75
genes in the centrifugal elutriation experiment containing 5 functionally related
groups: spindle pole body assembly and function, the proteasome, chromatin
structure, the ribosome and translation, and DNA replication. The first five
panels in Figure 9 show the individual classes along with the mean functions
and the last panel plots the all the classes together. Table 4 summarizes the
performance of each classifier. QIFC has the lowest generalization error (0.053),
followed by GEE, LDA, the functional classifier, logistic regression, and finally
SVM.

5.2. Wild-type Fly (Drosophila melanogaster) Temporal Data

The second example is based on Arbeitman et al. [1]’s study of the mRNA
levels of 4028 genes in wildtype flies (Drosophila melanogaster) with cDNA
microarrays over 70 time-points spanning fertilization, embryonic, larval, and
pupal stages and the first 30 days of adulthood. Ma et al. [12] developed a
data-driven clustering method for this data. We choose 6 clusters consisting of
1120 genes which demonstrate distinct yet similar gene expression patterns in
the fertilization stage to evaluate QIFC. The first six panels in Figure 10 display
the individual classes and the last panel shows the combined data.
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Figure 9: The five classes from the yeast cell cycle data. The thick lines are the fitted means
for each class.

Table 4: Performance of SVM, logistic regression, LDA, and QIFC on yeast cell data

number Classification standard confidence
of errors error error interval (95%)

SVM 30 0.4 0.057 (0.289, 0.511)
Logistic regression 15 0.200 0.046 (0.109, 0.291)

LDA 7 0.093 0.033 (0.028, 0.158)
GEE 6 0.08 0.031 (0.019, 0.141)

Functional classifier 9 0.12 0.038 (0.045, 0.195)
QIFC 4 0.053 0.026 (0.001, 0.105)

Table 5 summarizes the generalization errors of the four classifiers. QIFC
demonstrates the best performance with classification error 0.14, followed by the
performances of LDA, the functional classifier, GEE, SVM, and finally logistic
regression. Compared to the previous data example, the classification errors
of all the competing classifiers are higher. We note that classes 2, 4, 5 and
6 show rather similar gene expression patterns, which make the classification
difficult. Also, note that the performances of LDA and our classifier are similar,
and both achieve approximately the same classification accuracy, which is likely
attributed to the large sample size for this data example.
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Figure 10: The six classes from the fruit fly gene expression data. The thick lines are the
fitted means for each class.

Table 5: Performance of SVM, logistic regression, LDA, and QIFC on the fruit fly data

number Classification standard confidence
of errors error error interval (95%)

SVM 442 0.395 0.015 (0.366, 0.423)
Logistic regression 979 0.874 0.010 (0.854, 0.894)

LDA 168 0.150 0.011 (0.128, 0.172)
GEE 289 0.258 0.013 (0.232, 0.284)

Functional classifier 210 0.188 0.012 (0.165, 0.210)
QIFC 157 0.140 0.010 (0.120, 0.160)
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6. Summary and Discussion

We propose a new classifier QIFC for classifying longitudinal data based
on the quadratic inference function. Our approach provides a classifier suitable
for both continuous and discrete responses. Simulation studies and real data
applications demonstrate the favorable performance of QIFC, as compared with
other popular classifiers including the functional data classifier, the support
vector machine, logistic regression, linear discriminant analysis, the naive Bayes
classifier and the decision tree. In addition, QIFC is robust to misspecification
of the working correlation structure. QIFC is the first classifier proposed based
on estimation equations for longitudinal data.

QIFC models and incorporates the intrinsic correlations among longitudi-
nal observations within a cluster for finite sample applications. Most classifiers
don’t specifically model the within-cluster correlation structure, which hinders
their performances for longitudinal data. In contrast, LDA estimates the full
covariance matrix which involves a large number of parameters. When LDA is
used in applications with small to moderate sample size, either the estimate of
the covariance matrix is singular or the estimate is unstable so that the classifier
is underpowered. QIFC treats the covariance matrix as a finite linear combi-
nation of basis matrices, which serves most applications in longitudinal studies.
Therefore, QIFC makes better use of the correlation information and enjoys su-
perior performance. On the other hand, as the sample size increases, traditional
classifiers especially LDA will be able to estimate the covariance matrix more
precisely and thus picks up more power, and is expected to be comparable to
QIFC as the sample size is sufficiently large. Since most longitudinal studies
are expensive and the number of subjects are usually limited, QIFC serves as
a favorable classifier.

The power of the QIFC draws on the underlying semi-parametric model for
longitudinal data. QIF, which improves upon GEE, fits most longitudinal data
adequately, and QIFC gains its power from the model information. On the other
hand, classifiers including SVM, the decision tree and the naive Bayes classifier
approach the problem from a somewhat nonparametric perspective, and does
not efficiently fit the model inherent in longitudinal data. The functional clas-
sifier, which assumes that the measurements on a subject come from a smooth
curve, is powerful in its own right for the right types of data, but may not
achieve its optimal performance for longitudinal data where the measurements
are often not taken at a large number of dense temporal points.

We have assumed balanced longitudinal data so far for developing QIFC, i.e.,
every subject is measured at the same number of time/spatial points. However,
unbalanced data are quite common due to measurement constraints, missing
data, and quality control. To build a classifier for unbalanced data, we can
adopt techniques similar to Zhou and Qu [22] as follows. Suppose subject i
has qi measurements, where not all qi are equal, and let q be the total number
of time points cross all the subjects. To adapt QIFC for such unbalanced
data, we first define the q × qi linear transformation Ci for the ith subject
by removing the columns of the identity matrix, where the removed columns
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correspond to the missing observations. Now we augment the measurements
on each subject to q measurements by introducing y∗i = Ciyi, µ

∗
i (β) = Ciµi(β),

µ̇∗i (β) = Ciµ̇i(β), and A∗i = CiAiC
′
i. Note the components in y∗i are the same as

in yi for nonmissing responses but are 0 otherwise. Now the proposed classifier
can be used based on the newly defined variables. This works because the 0
values specified in µ̇∗i and y∗i − µ∗i β corresponding to the missing observations
ensure that the missing observations do not contribute to the objective function
in (3) and the distance metric in (4).

Since longitudinal studies have been, and will continue to be, an effective
statistical design to evaluate long-term covariate effects, profile disease-relevant
clinical variables and predict disease outcomes in the biomedical field, our clas-
sifier will serve as a powerful alternative to traditional classifiers.
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Appendix A.

A.1 Proof of Theorem 1

We prove the theorem for two classes, and the proof can be easily generalized
to multiple class settings.

Suppose f1 is the probability density function corresponding to class 1 with
mean µ1 and variance-covariance matrix V1.

By definition of QD1(y), we have,

QD1(y)

=g′1W
−1
1 g1

=[T̃ ′1(y − µ̂1)]′W−1
1 [T̃ ′1(y − µ̂1)]

p
−→

[T ′1(y − µ1)]′(T ′1V1T1)−1[T ′1(y − µ1)]

=[T ′1(y − µ1)]′Σ−1
1 [T ′1(y − µ1)], as training sample size n→∞,where Σ−1

1 = (T ′1V1T1)−1.

(1)

Similarly,

QD2(y) p
−→

[T ′2(y − µ2)]′Σ−1
2 [T ′2(y − µ2)], where Σ−1

2 = (T ′2V2T2)−1. (2)

Under the inverse location regression model (6),

T ′cy1 d µ1 + Σ
1
2
1 u =⇒ f(T ′cy1) = |Σ1|−

1
2 f0[(T ′1(y1 − µ1))Σ−1

1 (T ′1(y1 − µ1))].

In the same way, for class 2, we have,

f(T ′cy2) = |Σ2|−
1
2 f0[(T ′2(y2 − µ2))Σ−1

2 (T ′2(y2 − µ2))].

Now the optimal classification boundary is determined by,

r(y) =


1
|Σ1|−

1
2 f0[(T ′1(y1 − µ1))Σ−1

1 (T ′1(y1 − µ1))]

|Σ2|−
1
2 f0[(T ′2(y2 − µ2))Σ−1

2 (T ′2(y2 − µ2))]
> 1

2
|Σ1|−

1
2 f0[(T ′1(y1 − µ1))Σ−1

1 (T ′1(y1 − µ1))]

|Σ2|−
1
2 f0[(T ′2(y2 − µ2))Σ−1

2 (T ′2(y2 − µ2))]
< 1

. (3)

Under the inverse location model, |Σi| = |Σj |, i = 1, . . . , C., and hence the
classification rule (3) is equivalent to,

r(y) =


1
f0[(T ′1(y1 − µ1))Σ−1

1 (T ′1(y1 − µ1))]

f0[(T ′2(y2 − µ2))Σ−1
2 (T ′2(y2 − µ2))]

> 1

2
f0[(T ′1(y1 − µ1))Σ−1

1 (T ′1(y1 − µ1))]

f0[(T ′2(y2 − µ2))Σ−1
2 (T ′2(y2 − µ2))]

< 1

.
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Further,

r(y) =

{
1 f0[(T ′1(y1 − µ1))Σ−1

1 (T ′1(y1 − µ1))] > f0[(T ′2(y2 − µ2))Σ−1
2 (T ′2(y2 − µ2))]

2 f0[(T ′1(y1 − µ1))Σ−1
1 (T ′1(y1 − µ1))] < f0[(T ′2(y2 − µ2))Σ−1

2 (T ′2(y2 − µ2))]
.

Using the monotonicity of f0, we have,

r(y) =

{
1 (T ′1(y1 − µ1))Σ−1

1 (T ′1(y1 − µ1)) < (T ′2(y2 − µ2))Σ−1
2 (T ′2(y2 − µ2))

2 (T ′1(y1 − µ1))Σ−1
1 (T ′1(y1 − µ1)) > (T ′2(y2 − µ2))Σ−1

2 (T ′2(y2 − µ2))
.

(4)
Combining (1) and (2) with (4), we complete the proof.

A.2 Proof of Lemma 1

Let us first assume the training data are generated from 2 populations, P1
with mean µ1 and variance covariance Σ1, and P2 with mean µ2 and variance
covariance Σ2. Suppose a new subject, y, is from P1. Now we calculate the
probability of classifying y to P2.

Let A1 = T1W
−1
1 T ′1, A2 = T2W

−1
2 T ′2, Q = y′(T1W

−1
1 T ′1 − T2W

−1
2 T ′2)y −

2(µ′1T1W
−1
1 T ′1 − µ′2T2W

−1
2 T ′2)y = y′(A1 − A2)y − 2(µ′1A1 − µ′2A2)y, and A =

A1 −A2.
Then, when the training set is infinitely large,

classify y into P2⇔QD1(y) > QD2(y)

⇔(T ′1y − T ′1µ1)′W−1
1 (T ′1y − T ′1µ1) > (T ′2y − T ′2µ2)′W−1

2 (T ′2y − T ′2µ2)

⇔(y − µ1)′T1W
−1
1 T ′1(y − µ1) > (y − µ2)′T2W

−1
2 T ′2(y − µ2)

⇔y′T1W
−1
1 T ′1y − 2y′T1W

−1
1 T ′1µ1 + µ′1T1W

−1
1 T ′1µ1

> y′T2W
−1
2 T ′2y − 2y′T2W

−1
2 T ′2µ2 + µ′2T2W

−1
2 T ′2µ2

⇔y′(A1 −A2)y − 2(µ′1A1 − µ′2A2)

> µ′2A2µ2 − µ′1A1µ1

⇔Q > µ′2A2µ2 − µ′1A1µ1.

Therefore,

P{Classify y into P2|y is from P1}
=P{y′(A1 −A2)y − 2(µ′1A1 − µ′2A2)y > µ′2A2µ2 − µ′1A1µ1}.

In applications, it is possible to simulate the classification error, but the ana-
lytical properties of the error rate remain to be unraveled. Next we investigate
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some of its statistical properties.

We have,

E(y′(A1 −A2)y)

=tr((A1 −A2)Σ1) + µ′1(A1 −A2)µ1

=tr((A1 −A2)Σ1) + µ′1(A1 −A2)µ1,

E(2(µ′1A1 − µ′2A2)y)

=2(µ′1A1 − µ′2A2)µ1

=2µ′1A1µ1 − 2µ′2A2µ1,

E(Q)

=E(y′(A1 −A2)y)− E(2(µ′1A1 − µ′2A2)y)

=tr((A1 −A2)Σ1) + µ′1(A1 −A2)µ1 − 2µ′1A1µ1 + 2µ′2A2µ1,

V ar(y′(A1 −A2)y)

=2tr((A1 −A2)Σ1(A1 −A2)Σ1) + 4µ′1(A1 −A2)Σ1(A1 −A2)µ1,

V ar(2(µ′1A1 − µ′2A2)y)

=4(µ′1A1 − µ′2A2)Σ1(µ′1A1 − µ′2A2)′

=4(µ′1A1 − µ′2A2)Σ1(µ′1A1 − µ′2A2)′,

and,

Cov(y′(A1 −A2)y, 2(µ′1A1 − µ′2A2)y)

=Cov(y′(A1 −A2)y, 2(µ′1A1 − µ′2A2)y)

=E[y′(A1 −A2)y ∗ 2(µ′1A1 − µ′2A2)y]− E[y′(A1 −A2)y]E[2(µ′1A1 − µ′2A2)y]

=2µ′1(A1 −A2)µ1(µ′1A1 − µ′2A2)µ1 + 2tr((A1 −A2)Σ1(µ′1A1 − µ′2A2)µ1)

+ 4tr((A1 −A2)µ1(µ′1A1 − µ′2A2)Σ1)

− [tr((A1 −A2)Σ1) + µ′1(A1 −A2)µ1]2(µ′1A1 − µ′2A2)µ1.

Hence,

V ar(Q)

=V ar(y′(A1 −A2)y) + V ar(2(µ′1A1 − µ′2A2)y)

− 2Cov(y′(A1 −A2)y, 2(µ′1A1 − µ′2A2)y)

=2tr((A1 −A2)Σ1(A1 −A2)Σ1) + 4µ′1(A1 −A2)Σ1(A1 −A2)µ1

+ 4(µ′1A1 − µ′2A2)Σ1(µ′1A1 − µ′2A2)′ − 2[2µ′1(A1 −A2)µ1(µ′1A1 − µ′2A2)µ1

+ 2tr((A1 −A2)Σ1(µ′1A1 − µ′2A2)µ1) + 4tr((A1 −A2)µ1(µ′1A1 − µ′2A2)Σ1)

− [tr((A1 −A2)Σ1) + µ′1(A1 −A2)µ1]2(µ′1A1 − µ′2A2)µ1]

=2tr((A1 −A2)Σ1(A1 −A2)Σ1) + 4(µ′2 − µ′1)A2)Σ1(A2(µ2 − µ1).
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To get an upper bound to the error rate, recall that Cantelli’s Inequality
(Grimmett and Stirzaker, 2001) states the following.

Let X be a random variable with expected value µ and finite variance σ2.
Then for any real number k > 0,

Pr (X − µ ≥ kσ) ≤ 1

1 + k2
.

Applying the inequality gives us the following upper bound,

P{Classify y into P2|y is from P1}
=P{Q > µ′2A2µ2 − µ′1A1µ1}
=P{Q− E(Q) > µ′2A2µ2 − µ′1A1µ1 − E(Q)}

=P{Q− E(Q) >
µ′2A2µ2 − µ′1A1µ1 − E(Q)√

V ar(Q)

√
V ar(Q)}

≤ 1

1 +

(
µ′2A2µ2−µ′1A1µ1−E(Q)√

V ar(Q)

)2

=
1

1 +

(
(µ2−µ1)′A2(µ2−µ1)−tr((A1−A2)Σ1)√

2tr((A1−A2)Σ1(A1−A2)Σ1)+4(µ′2−µ′1)A2Σ1A2(µ2−µ1)

)2 .

Similarly, we get,

P{Classify y into P1|y is from P2}

≤ 1

1 +

(
(µ1−µ2)′A1(µ1−µ2)−tr((A2−A1)Σ2)√

2tr((A2−A1)Σ1(A2−A1)Σ2)+4(µ′1−µ′2)A1Σ2A1(µ2−µ1)

)2 .

Assuming equal frequencies for both populations, the upper bound to the
error rate is given by

1

2

1

1 +

(
(µ2−µ1)′A2(µ2−µ1)−tr((A1−A2)Σ1)√

2tr((A1−A2)Σ1(A1−A2)Σ1)+4(µ′2−µ′1)A2Σ1A2(µ2−µ1)

)2

+
1

2

1

1 +

(
(µ1−µ2)′A1(µ1−µ2)−tr((A2−A1)Σ2)√

2tr((A2−A1)Σ1(A2−A1)Σ2)+4(µ′1−µ′2)A1Σ1A2(µ2−µ1)

)2 .
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A.3 Simulation Result on Continuous Responses with Block Diagonal Correla-
tion
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Figure S-1: Performance comparison based on the same setting as in Section 4.1 except that
the responses have a block diagonal correlation structure with parameter 0.85 and block size
5, and the misspecification of QIFC sets the correlation to be exchangeable plus AR-1.
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Table S-1: Simulated generalization error, standard error and 95% confidence interval on
continuous responses with block diagonal correlation structure with parameter 0.85 and block
size 5.

Classification standard confidence
error error interval (95%)

SVM 0.23 0.019 (0.193, 0.267)
Logistic regression 0.089 0.013 (0.064, 0.114)

LDA 0.230 0.019 (0.193, 0.267)
Functional classifier 0.238 0.019 (0.201, 0.275)

GEE 0.142 0.016 (0.111, 0.173)
New classifier(misspecification) 0.064 0.011 (0.043, 0.085)

New classifier 0.065 0.011 (0.043, 0.087)
Upper bound 0.783 - -
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Figure S-2: Upper bound of the error rate with respect to time shift and number of repeated
measurements. Simulation setting is the same as that in Section 4.1 except that the correlation
has a block diagonal structure with parameter 0.85 and block size 5.
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