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Abstract Expression quantitative trait loci (eQTLs) are genomic loci that
regulate expression levels of mRNAs or proteins. Understanding these regu-
latory provides important clues to biological pathways that underlie diseases.
In this paper, we propose a new statistical method, GroupRemMap, for identi-
fying eQTLs. We model the relationship between gene expression and single
nucleotide variants (SNVs) through multivariate linear regression models, in
which gene expression levels are responses and SNV genotypes are predictors.
To handle the high-dimensionality as well as to incorporate the intrinsic group
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structure of SNVs, we introduce a new regularization scheme to (1) control
the overall sparsity of the model; (2) encourage the group selection of SNVs
from the same gene; and (3) facilitate the detection of trans-hub-eQTLs. We
apply the proposed method to the colorectal and breast cancer data sets from
The Cancer Genome Atlas (TCGA), and identify several biologically inter-
esting eQTLs. These findings may provide insight into biological processes
associated with cancers and generate hypotheses for future studies.

Keywords GroupRemMap · remMap · eQTL Analysis · Regularization ·
Multivariate Linear Regression

1 Introduction

Understanding regulatory relationships between genetic variants and gene ex-
pression is important for deciphering biological mechanisms underlying a wide
range of human diseases. The goal of expression quantitative trait loci (eQTLs)
analysis is to identify not only cis-eQTLs when SNVs (single nucleotide vari-
ants) regulate the expression of their own genes, but also trans-eQTLs when
SNVs regulate the expression of genes to which the SNVs do not belong. De-
spite the promising progress made in recent human eQTL studies (Morley et
al., 2004), large scale identification of cis- and trans- eQTLs is still daunting.
The challenges stem from the high dimensionality of the data and complex
multiple-to-multiple relationships between SNVs and gene expressions. In ad-
dition to these challenges, eQTL signals are generally weak. It is therefore
imperative that statistical methods for detecting eQTLs should utilize the
data most efficiently.

A natural way to characterize the regularization network between a set of
SNVs and a set of expressions is through multivariate regression models in
which the expression levels are responses and the SNVs are predictors. How-
ever, both the number of responses and the number of predictors can be larger
than the sample size. Moreover, the predictors are often highly correlated due
to natural grouping structures (e.g., genes or linkage disequilibrium blocks)
for SNVs. These challenges complicate the already difficult problem of model
selection and parameter estimation in high dimensional data.

To tackle the challenge of high-dimension-low-sample-size in multivariate
models, various regularization methods have been proposed, assuming model
sparsity in the sense that only a few predictors are associated with outcomes.
This sparsity assumption is believed to hold in many situations such as genetic
regulatory networks and genome-wide associations with complex diseases. In
Turlach et al.(2005), an L∞ based penalty was employed to select a common
subset of predictors for all outcomes. Lutz and Bühlmann (2006) introduced
the L2 row boosting method to generate a sparse predictive model. In addition,
Yuan et al.(2007) proposed to impose the L2 norm constraint on the loading
matrix for multivariate linear factor regression models to reduce the dimen-
sionality of the predictor space. Obozinski et al.(2008) proposed an L1/L2

penalty to identify the union support set. More recently, Peng et al.(2010)
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proposed a remMap penalty to deal with the high dimensionality of both pre-
dictors and outcomes. remMap combines the L1 norm of the whole coefficient
matrix and the L2 norm of the coefficient vectors corresponding to the same
predictor. The L1 penalty controls the overall sparsity of the coefficient matrix
such that only a subset of predictors are selected, and each selected predictor
only influences some but not all responses. The L2 penalty induces group spar-
sity on coefficients for the same predictor and further limits the total number
of predictors entering the model. Moreover, the L2 penalty encourages the
selection of master predictors through borrowing information across different
regressions. Another recent work for penalized multivariate regression is Roth-
man et al. (2010), in which the authors modeled the residuels from different
regressions using a joint Gaussian distribution to account for the correlation
among the response variables. Other related work for jointly modeling gene ex-
pressions and genetic variants include Yin and Li (2011) and Li et al. (2012),
both focusing on studying the conditional independent relationships among
gene expressions adjusting for possible genetic effects.

However, none of these methods takes consideration of potential structures
among predictors. SNVs from the same transcript, gene or linkage disequilib-
rium block are often correlated. Analyzing SNVs within the same group jointly
as a unit could potentially increase power by aggregating signals, and enhance
the interpretability (Neale and Sham 2004; Chen et al. 2010; Liu et al. 2010;
Li et al. 2011). The latter aspect is attractive when assessing the association
of SNVs with gene expression in the eQTL analysis, because the functional
unit of gene expression is at transcript or gene level, which usually consists
of 10s to 100s of SNVs. We, therefore, propose a new regularization penalty,
called GroupRemMap, which encourages group selection of SNVs from the same
group while controlling the overall sparsity of the model and facilitating the
detection of trans-hub-eQTLs.

The paper is organized as follows. The GroupRemMap model and its imple-
mentation are described in Section 2. Section 3 and 4 demonstrate the perfor-
mance of the new method with simulation studies and real data applications,
respectively. The paper ends with a brief summary in Section 5.

2 The GroupRemMap Method

2.1 Model

Consider an eQTL study of n subjects where each subject has p SNVs and q
gene expressions. Assume a multivariate linear regression model for the effects
of the p SNVs on the q gene expressions:

(yj1, yj2, · · · , yjq) = (xj1, xj2, · · · , xjp)Bp×q + εj , 1 ≤ j ≤ n (1)

where (yj1, yj2, · · · , yjq) and (xj1, xj2, · · · , xjp) denote the q expressions and p
SNVs for the jth subject, respectively, B = (bij)p×q is the coefficient matrix,
and ε1, ε2, · · · , εn are i.i.d error vectors with mean 0. For simplicity, we use
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Yn×q := (Y1, Y2, · · · , Yq) to denote the gene expression data, and Xn×p :=
(X1, X2, · · · , Xp) to denote the SNV data, where Yi, i = 1, . . . , q, is an n × 1
vector of the ith gene expression levels, and Xi, i = 1, . . . , p, is an n × 1
vector of the ith SNV genotype. Throughout the paper, we assume that gene
expression and SNVs have been centered with sample mean equal to 0.

We assume prior knowledge is available to group SNVs into J distinct
groups and denote these groups by A1, A2, · · · , AJ ⊆ {1, 2, 3, · · · , p}. We note
that model (1) can easily accommodate other covariates such as patient or
tumor characteristics (e.g., age, sex and tumor stage) by adding the covariates
as predictors on the RHS of model (1). For simplicity, we will not include this
in the following presentation of the method.

Our goal is to develop a regularized method to incorporate the group struc-
turs on the SNVs in selecting groups and important SNVs within the identi-
fied groups. Towards this goal, we propose to minimize the following objective
function:

L(B;λ1, λ2) =
1

2

q∑
l=1

∣∣∣∣Yl −XBl∣∣∣∣22 + λ1

p∑
i=1

||Ci ·Bi||1

+λ2

J∑
j=1

wj

∑
k∈Aj

||Ck ·Bk||2

γ

(2)

where || · ||1 and || · ||2 denote the L1 and L2 norms for vectors, respectively,
Bl is the lth column of B, Bi is the ith row of B, and Ci is the ith row of
C = (cij)p×q, where cij is a 0-1 valued indicator for whether the corresponding
coefficient bij should be penalized. For example, if we know in advance that
the ith SNV has a significant effect on the jth gene expression, we can set
cij = 0 and bij will not be penalized; otherwise, we let cij = 1. The values of
tuning paramters λ1, λ2 ≥ 0 control the model dimension. The weight wj is a
constant, which incorporates the dimensionality of group Aj . A simple choice
is wj ∝ |Aj |1−γ , where |Aj | is the total number of SNVs in group Aj and
γ > 0 is the bridge penalty (Frank and Friedman, 1993; Huang et al., 2009).

In the objective function (2), the second term is a Lasso penalty on the
whole coefficient matrix with the turning parameter λ1 to control the overall
sparsity of the coefficient matrix B. This is similar to remMap proposed by
Peng et al. (2010). In the third term, we impose a weighted bridge type of
penalty on each group to incorporate the group structure on the SNVs. When
γ ∈ (0, 1), this term encourages a group selection effect (see section 2.2 for
details). Within the same group, we use L2 norm on the row vectors Ck · Bk
to induce the row sparsity of B, i.e. some rows are penalized to be entirely
zero, such that SNVs that have effects on a majority of gene expressions are
more likely to enter the final model. This facilitates identification of master
predictors, which are often of great interest in genetic regulatory network
studies.

We refer to the combination of the L1 penalty and the bridge penalty on L2

norm of grouped predictors as the GroupRemMap penalty, and call the coefficient



GroupRemMap for eQTL analysis 5

estimator based on the GroupRemMap penalty the GroupRemMap estimator:

B̂ (λ1, λ2) = argminL(B;λ1, λ2).

In the following section, we will introduce an iterative algorithm to solve the
above minimization problem. We will also show that the new GroupRemMap

penalty can conduct variable selection at both the group and predictor lev-
els simultaneously if we let 0 < γ < 1. Specifically, in the simulation and
real applications, we set γ = 1/2, while selecting optimal values for tuning
parameters λ1 and λ2 through cross validation (see Section 2.3 for details).

Both the remMap penalty in Peng et.al (2010) and the group bridge

penalty in Huang et.al (2009) are special cases of the GroupRemMap penalty.
Specifically, when γ = 1 and wj = 1, the GroupRemMap penalty simplifies to the
original remMap penalty. When q = 1 and λ1 = 0 (i.e. univariate outcomes),
the penalty function becomes the group bridge penalty.

2.2 Estimation

In this section, we introduce an iterative algorithm to obtain the GroupRemMap
estimator B̂ (λ1, λ2). Define an alternative objective function as follows,

S(B, θ;λ1, τ) =
1

2

q∑
l=1

∣∣∣∣Yl −XBl∣∣∣∣22 + λ1

p∑
i=1

||Ci ·Bi||1

+

J∑
j=1

θ
1− 1

γ

j w
1
γ

j

∑
k∈Aj

||Ck ·Bk||2

+ τ

J∑
j=1

θj (3)

where θ = (θ1, θ2, · · · , θJ) are nuisance parameters, and τ > 0 is the tuning
parameter on θ.

Similar to Proposition 1 in Huang et al. (2009), we have the following
result:

Proposition 1. For 0 < γ < 1, if we let λ2 = τ1−γγ−γ(1− γ)γ−1, then

B̂ (λ1, λ2) minimizesL(B;λ1, λ2)

⇐⇒
(
B̂ (λ1, λ2) , θ̂

)
minimizesS(B, θ;λ1, τ) subject to θj ≥ 0, j = 1, . . . , J.

The proof is elementary, and we brief the idea as follows. Let θ̂ = argminS(B, θ;λ1, τ),

then it is easy to show that S(B, θ̂;λ1, τ) = L(B;λ1, λ2). The proposition fol-
lows immediately.

The above proposition motivates us to estimateB by minimizing S(B, θ;λ1, τ)
instead of directly minimizing L(B;λ1, λ2). If θ is fixed, the penalties in (3) can
be treated as a weighted version of remMap penalty, where predictors within

the same group Aj share the same L2 norm tuning parameter θ
1− 1

γ

j w
1
γ

j . For

0 < γ < 1, a small θj leads to a large value of θ
1− 1

γ

j , which tends to shrink the
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coefficients in group Aj entirely to 0, and induces the group selection. Within
the same group, the combination of the L1 norms and the weighted L2 norms
can induce sparse selection of individual predictors.

At iteration s ≥ 1, given the previous estimate B(s−1) and fixed parameters
λ1 and τ , we propose the following two-step iterative algorithm to estimate
the coefficients:

– Step 1 Update θ by solving

∂S(B(s−1), θ;λ1, τ)/∂θj = 0, j = 1, 2, · · · , J.

A simple calculation yields

θ
(s)
j = wj

(
1− γ
τγ

)γ∑
k∈Aj

∣∣∣∣∣∣Ck ·B(s−1)
k

∣∣∣∣∣∣
2

γ

.

– Step 2 Given current θ(s), update B by solving

B(s) = arg min
1

2

q∑
l=1

∣∣∣∣Yl −XBl∣∣∣∣22 + λ1

p∑
i=1

||Ci ·Bi||1

+

J∑
j=1

(
θ
(s)
j

)1− 1
γ

w
1
γ

j

∑
k∈Aj

||Ck ·Bk||2

 .

Repeat Step 1 and 2 until convergence.
For the minimization problem in Step 2, we adopt the strategy in Peng

et.al (2010) to iteratively update each row of B until convergence. The de-
tailed calculation for updating each row of B with all the other rows fixed is
summarized below.

Proposition 2. For k ∈ Aj , when {Bi}i 6=k in Step 2 are fixed, the kth
row Bk = (bk1, bk2, · · · , bkq) can be estimated by:

b̂k,l =


XT
k Ỹl/ ||Xk||22 , if ckl = 0;

0, if ckl = 1 and ||B̂lassok ||2,C = 0;(
1−

(
θ
(s)
j

)1− 1
γ w

1
γ
j

||Xk||22·||B̂lassok ||2,C

)
+

· b̂lassokl , if ckl = 1 and ||B̂lassok ||2,C 6= 0,

for l = 1, 2, . . . , q, where

Ỹl = Yl −
∑
i 6=k

Xibil,

||B̂lassok ||2,C =

(
q∑
l=1

ckl

(
b̂lassokl

)2)1/2

,

and

b̂lassokl =

{
XT
k Ỹl/ ||Xk||22 , if ckl = 0;(
|XT

k Ỹl| − λ1
)
+
· sign(X

T
k Ỹl)

||Xk||22
, if ckl = 1.
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2.3 Selection of λ1 and τ

K-fold cross validation is a commonly used approach for selecting tuning pa-
rameters. The procedure can be summarized as the following steps:

1. Randomly partition the whole data (Y,X) into K non-overlapping subsets
(Y (i), X(i)) with approximately equal sample sizes. Let D(i) = (Y (i), X(i))
be the validation set, and D(−i) = (Y (−i), X(−i)) be the complementary
set of D(i) representing the training set.

2. Given a pair of (λ1, τ), obtain the estimator of B based on the training set
D(−i) by using the two-step iterative algorithm in Section 2.2. Denote the
estimator as B̂(i)(λ1, τ).

3. Define the cross validation score for (λ1, τ) based on the validation set D(i)

for each outcome:

CV.rssl(λ1, τ) :=

K∑
i=1

∣∣∣∣∣∣Y (i)
l −X(i)B̂(i),l(λ1, τ)

∣∣∣∣∣∣2
2
, l = 1, 2, · · · , q

where B̂(i),l(λ1, τ) is the lth column of B̂(i)(λ1, τ). Thus the residual sum
of square across all outcomes can be defined as:

CV.rss(λ1, τ) :=

q∑
l=1

CV.rssl(λ1, τ).

4. Select the pair of (λ1, τ) with the smallest CV.rss as the final tuning pa-
rameters.

To avoid overfitting, sometimes it may be helpful to calculate cross validation
score using re-estimated coefficients based on the selected model (Peng et. al.
2010). Then the last two steps in the above procedure can be modified as
follows:

3. In the training set D(−i), for the lth outcome, calculate the ordinary least
square estimators for the predictors with non-zero estimators in the lth
column of B̂(i)(λ1, τ). Here, we need to assume that the least square esti-
mators are well defined. Generally this is the case when the true model is

sparse. Denote the new least square estimator by B̂
(i)
OLS(λ1, τ). The cross

validation score for (λ1, τ) can then be calculated as:

CV.ols(λ1, τ) :=

q∑
l=1

CV.olsl(λ1, τ),

where

CV.olsl(λ1, τ) :=

K∑
i=1

∣∣∣∣∣∣Y (i)
l −X(i)B̂

(i),l
OLS(λ1, τ)

∣∣∣∣∣∣2
2
, l = 1, 2, · · · , q.

4. Select the pair of (λ1, τ) with the smallest CV.ols as the final tuning pa-
rameters.
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In practice, we recommend to compute both CV.rss and CV.ols scores, and
use the one that gives smaller minimum cross validation score to determine
the tuning parameter. Based on our experience, when the signal in the data is
moderate, the minimum CV.ols score is usually lower than CV.rss, and tuning
parameters selected by CV.ols often produce models with lower false positive
rate than CV.rss. However, when the signal is extremely weak and power is
of main concern compared to false positive rate, the minimum CV.rss score is
usually lower than that of CV.ols.

3 Simulation studies

In this section, we conduct simulation studies to evaluate the performance of
GroupRemMap, and compare it with remMap and the univariate group bridge

methods. We assess the performance of these methods based on two criteria:
(1) group selection and individual predictor selection: average false positive
number (FP) and false negative number (FN); (2) prediction error: average
K-fold cross validation based prediction error under the identified model.

We consider four different simulation settings. For each setting, a total
of 200 independent data sets are generated. We calculate both CV.ols and
CV.rss for all methods. CV.ols consistently gives lower cross validation scores
and selects models with less false positive counts than CV.rss under all sce-
narios (data not shown). Hence, we report the results corresponding to models
selected by CV.ols in this section.

3.1 Simulation Setting I

We consider two cases: equal group sizes (G1) and varying group sizes (G2). For
both cases J = 60 groups, p = 300 and the sample size n = 100. Specifically,
we generate the data as follows:

S1. Simulate J latent random variables: Z1, Z2,· · · ,ZJ , from a multivariate
normal distribution N(0, ΣZ), where ΣZ =

[
0.5|i−j|

]
J×J .

S2. Based on Z1, Z2,· · · ,ZJ , define J categorical variables for G1 and G2.
For G1:

Xi =



1 if Zi < Φ−1(1/6),
2 if Φ−1(1/6) ≤ Zi < Φ−1(1/3),
3 if Φ−1(1/3) ≤ Zi < Φ−1(1/2),
4 if Φ−1(1/2) ≤ Zi < Φ−1(2/3),
5 if Φ−1(2/3) ≤ Zi < Φ−1(5/6),
6 if Zi ≥ Φ−1(5/6),

where Φ(·) is the cumulative distribution function of N(0, 1).
For G2:
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If i is odd, i.e. 1, 3, 5, · · · , 59, let

Xi =


1 if Zi < Φ−1(1/4),
2 if Φ−1(1/4) ≤ Zi < Φ−1(1/2),
3 if Φ−1(1/2) ≤ Zi < Φ−1(3/4),
4 if Zi ≥ Φ−1(3/4).

If i is even, i.e., 2, 4, 6, · · · , 60, let

Xi =



1 if Zi < Φ−1(1/8)
2 if Φ−1(1/8) ≤ Zi < Φ−1(1/4)
3 if Φ−1(1/4) ≤ Zi < Φ−1(3/8)
4 if Φ−1(3/8) ≤ Zi < Φ−1(1/2)
5 if Φ−1(1/2) ≤ Zi < Φ−1(5/8)
6 if Φ−1(5/8) ≤ Zi < Φ−1(3/4)
7 if Φ−1(3/4) ≤ Zi < Φ−1(7/8)
8 if Zi ≥ Φ−1(7/8)

S3. Based on Xi(1 ≤ i ≤ J), define the grouped predictors:

Xi.j := I (Xi = j)

For G1, j = 1, 2, 3, 4, 5.
For G2, if i is odd, j = 1, 2, 3; otherwise, j = 1, 2, 3, · · · , 7

For both G1 and G2, we generate the outcomes from:

Y1 =−1.77X1.1 − 1.87X1.2 − 2.07X2.3 + 2.41X3.1 − 1.70X3.2 + ε1

Y2 =−2.40X1.1 + 2.44X1.2 − 2.16X1.3 − 2.13X3.1 + 1.56X3.3 + ε2

Y3 = 1.71X1.1 + 1.68X1.2 − 2.19X1.3 + 1.88X2.1 − 2.27X3.2 + ε3 (4)

Y4 = 2.00X1.1 + 2.22X1.3 + 2.49X2.1 + 1.88X2.2 + 2.28X3.3 + ε4

Y5 = 2.43X1.1 − 1.71X2.1 − 2.15X2.2 + 1.63X2.3 + 1.77X3.3 + ε5

where ε = (ε1, ε2, ε3, ε4, ε5) ∼ N(0, Σε) and Σε =
[
0.5|i−j|

]
5×5. All above non-

zero coefficients are generated from U(1.5, 2.5) ∪ U(−2.5,−1.5). The results
are shown in Table 1.

Under both G1 and G2 scenarios, GroupRemMap has smaller FP, FN and
standard error than remMap and group bridge in both group selection and
individual predictor selection. In addition, whether the group size is constant
or not does not appear to affect the performance of GroupRemMap.

3.2 Simulation Setting II

We generate the data in the same way as in Simulation Setting I except that
the noise level is higher in model (4). Specifically, we generate noise from
N(0, 4Σε), four times as large variance as in Setting I. For simplicity, we only
consider the case of equal group sizes. The results are presented in Table 2.
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Table 1 Summary of mean of FP (SE) and mean of FN (SE) over 200 data sets under
setting I (n=100, J=60, p=300) when the noise level is moderate.

Group.S (14) ∗ Indiv.S (25) ∗

Method FP FN FP FN

G1 G.remmap 4.97(3.8) 0.03(0.16) 7.28(4.35) 0.46(0.76)
Remmap 8.38(6.02) 0.02(0.12) 13.05(5.98) 0.32(0.77)
G.bridge 13.22(5.08) 2.19(1.43) 21.13(8.1) 3.54(2.43)

G2 G.remmap 4.94(3.4) 0.07(0.27) 7.94(3.92) 0.82(1.01)
Remmap 11.38(6.45) 0.15(0.45) 16.37(7.95) 1.02(1.42)
G.bridge 9.17(4.13) 1.18(0.99) 14.7(5.88) 2.61(1.85)

∗ Group.S(14): Group Selection and the number of true groups for all outcomes is 14.
Indiv.S(25): Individual Predictor Selection and the number of true predictors for all
outcomes is 25;
FP: False Positive Number ; FN: False Negative Number.

Table 2 Summary of mean of FP (SE) and mean of FN (SE) over 200 data sets under
setting II (n = 100, J = 60, p = 300) where the noise level is high.

Group.S (14)∗ Indiv.S (25)∗

Method FP FN FP FN

G1 G.remmap 14.14(8.38) 1.46(2.09) 17.93(10.38) 4.98(3.49)
Remmap 19.72(12.10) 0.68(1.29) 25.4(13.32) 4.06(3.36)
G.bridge 14.02(5.92) 6.61(2.06) 20.42(9.85) 12.4(3.32)

∗ Group.S(14): Group Selection and the number of true groups for all outcomes is
14.Indiv.S(25): Individual Predictor Selection and the number of true predictors for all
outcomes is 25;
FP: False Positive Number ; FN: False Negative Number.

As expected, all three methods commit more FP and FN when the noise
level increases compared to Simulation Setting I (see the top panel of Table
1 vs Table 2). However, GroupRemMap still gives more favorable results than
remMap and group bridge methods. Specifically, compared to remMap, since
GroupRemMap imposes an additional layer of regularization by using the group
structure among predictors, it tends to have better control of FP than remMap

with only slightly loss in detecting signals (less than 1 count). Thus, the over-
all performance of GroupRemMap is better than that of remMap. For group

bridge, since it deals with each regression separately and ignores the depen-
dence among different responses, it often has much higher FN than either
remMap or GroupRemMap.
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3.3 Simulation Setting III

We generate predictors using different numbers of groups J = 30, 60, 100 with
equal group size of 5. We also consider a relatively larger linear model:

Y1 = (X1.1, X1.2, X1.3, X2.1, X2.2, X4.1, X3.1, X3.2, X3.3, X8.1))TB1 + ε1

Y2 = (X1.1, X1.2, X1.3, X2.2, X2.3, X4.2, X5.1, X5.2, X5.3, X10.1)TB2 + ε2

Y3 = (X1.1, X1.2, X1.3, X2.3, X2.4, X4.3, X7.1, X7.2, X7.3, X12.1)TB3 + ε3 (5)

Y4 = (X1.1, X1.2, X1.3, X2.4, X2.5, X4.4, X9.1, X9.2, X9.3, X13.1)TB4 + ε4

Y5 = (X1.1, X1.2, X1.3, X2.1, X2.5, X4.5, X11.1, X11.2, X11.3, X14.1)TB5 + ε5

whereB1, B2, · · · , B5 are non-zero coefficient vectors generated from U(1.5, 2.5)∪
U(−2.5,−1.5), and (ε1, ε2, ε3, ε4, ε5) ∼ N(0,

[
0.5|i−j|

]
5×5). The performance of

the three methods for this simulation is shown in Table 3.

Table 3 Summary of mean of FP (SE) and mean of FN (SE) over 200 data sets under
setting III(n = 100).

Group.S (25)∗ Indiv.S (50)∗

Method FP FN FP FN

J = 30 G.remmap 9.76(3.82) 2.48(1.17) 15.81(4.78) 4.84(2.18)
(p = 150) Remmap 21.4(5.54) 1.05(1.1) 32.54(7.19) 5.38(2.3)

G.bridge 9.93(3.65) 3.52(1.6) 23.78(7.22) 4.79(2.49)

J = 60 G.remmap 15.29(5.85) 2.54(1.25) 21.86(7.12) 5.12(2.63)
(p = 300) Remmap 32.42(8.41) 1.19(1.06) 42.71(9.91) 6.06(2.82)

G.bridge 14.53(4.92) 5.36(1.9) 26.15(8.36) 9.56(4.33)

J = 100 G.remmap 23.43(7.54) 2.63(1.35) 30.36(8.67) 5.18(3.13)
(p = 500) Remmap 43.17(12.7) 1.43(1.27) 53.44(15.1) 6.77(3.22)

G.bridge 23.12(6.88) 6.61(2.23) 37.46(11.2) 12.73(5.16)

∗ Group.S(25): Group Selection and the number of true groups for all outcomes is 25.
Indiv.S(50): Individual Predictor Selection and the number of true predictors for all
outcomes is 50;
J: number of groups; FP: False Positive; FN: False Negative.

Again, GroupRemMap has better performance than remMap and group bridge.
In addition, as the number of groups (and predictors) increases, the FP of all
three methods increases. However, the FN of GroupRemMap and remMap ap-
pear to be less affected than GroupBridge. This suggests that jointly modeling
through multiple regression helps enhance the power.

3.4 Simulation Setting IV

In this section, we generate data mimicking the setting of the colorectal cancer
data set in Section 4.1. Specifically, we use the genotype data of 567 SNVs
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from 202 colorectal tumor samples (see Section 4.1 for details) and generate
the transcript levels of 67 genes based on a simulated eQTL network as shown
in Figure 1. The 567 SNVs belong to J = 26 groups (genes), with mean size
21.8 and range from 1 to 101. There are a total of 121 eQTLs in the eQTL
network, involving 46 SNVs and 36 transcripts. Eight out of 121 eQTLs are
cis-regulation. In addition, there are 16 trans-hub (degree>5). The coefficients
corresponding to eQTL edges are randomly generated from Uniform(1,4), and
the mean noise-to-signal ratio is 1.216. Transcripts that don’thave eQTL edges
are generated from N(0,1). A total of 200 independent data sets are generated.
The results are presented in Table 4.

Similar to the previous results, GroupRemMap performs the best among
three methods: it produces the lowest false positive and false negative errors
in both individual predictor selection and group selection. group bridge has
particularly high false positives in this example, suggesting that jointly mod-
eling multiple transcripts is essential in the high dimensional eQTL analysis.

In practice, some predictors may be classified into wrong groups due to
incomplete knowledge. To assess the impact of misclassification on the perfor-
mance of GroupRemMap, we randomly assign the group labels of 10% of the
SNVs from the groups that have eQTL regulations. The result is also presented
in Table 4. Overall, the performance of GroupRemMap is robust against group
label misclassficaition with a slight increase in FP and no obvious change in
FN.

We also investigate the effect of different values of γ on the performance of
GroupRemMap. The results for γ = 0.25, γ = 0.50 and γ = 0.75 are summarized
in Table S-1 in the Supplementary Materials. While results of different γ are
rather similar, γ = 0.5 gives the most favorable FP and FN. Thus, we choose
to use γ = 0.5 in the real data analysis in Section 4.

Moreover, to evaluate the performance of our method under the setting
where both the number of predictors and responses exceed the sample size, we
perform another simulation using q = 400. Specifically, we added 333 new noise
responses generated from independent N(0, 1) to the original 67 transcripts.
The corresponding B is of 567 × 400, with the last 333 columns being zeros.
The performances of the three methods on this data set are summarized in
Table S-2. The performance of GroupRemMap is still quite good, while the false
positive of remMap and group bridge are at least doubled. This suggests that
GroupRemMap is quite capable of handling cases with both p and q exceeding
n.

4 Real data analysis

We apply GroupRemMap for eQTL analysis on two cancer data sets from the
Cancer Genome Atlas (TCGA) consortium (http://www.cancergenome.nih.
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Fig. 1 Layout of the eQTL network used in Simulation IV. Each pink node represents
a SNV and each blue node represents a transcript. Green and orange edges represent cis-
eQTLs and trans-eQTLs respectively. Only those SNVs (46) and transcripts (36) with at
least one eQTL edge are shown in the figure. The number of each SNV node represents the
SNP-group label of that SNV.

gov/). The first data set consists of gene expression data and SNV genotype
data for a group of colorectal tumor tissue samples; while the second data set
is for breast tumor tissue samples.

Since genome-wide investigation of cis- and trans- eQTLs involves esti-
mating thousands of millions of parameters, such analysis is extremely under-
powered based on data sets with only a few hundred samples, as the ones
considered in this section. To tackle this difficulty, we will make use of a priori
knowledge about biological pathways and risk loci, and perform eQTL anal-
ysis for pre-selected gene sets from genome regions or pathways known to be
relevant to the disease. Specifically, we will focus on 31 genome regions with
known risk SNVs in the colorectal cancer study and the DNA repair pathway
in the breast cancer study.
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Table 4 Summary of mean of FP (SE) and mean of FN (SE) over 200 data sets under
setting IV.

Group.S (54)∗ Indiv.S (121)∗

Method FP FN FP FN

G.remmap 25.90(0.36) 0.12(0.02) 140.44(0.92) 9.06(0.08)
G.remmap(mislab)∗ 30.25(0.39) 0.10(0.02) 146.16(0.88) 10.11(0.07)
Remmap 33.96(0.45) 0.13(0.02) 165.70(1.00) 9.16(0.07)
G.bridge 263.99(1.26) 2.80(0.03) 902.35(4.44) 12.52(0.08)

∗ Group.S(54): Group Selection and the number of true groups for all outcomes is 54.
Indiv.S(121): Individual Predictor Selection and the number of true predictors for all
outcomes is 121.
G.remmap(mislab): 10% of the group labels are mislabeled.
FP: False Positive; FN: False Negative. The numbers within the parentheses are estimated
standard errors.

4.1 Colorectal cancer

As of September 13, 2012, in TCGA, tumor tissues from 224 colorectal cancer
patients had been assayed on platform Agilent g4502a for their gene expres-
sion, and we downloaded the level 3 data1 via Firehose from the Broad Insti-
tute’s Genome Data Analysis Center (GDAC) website (https://confluence.
broadinstitute.org/display/GDAC/Home). As of May 15, 2012, 584 had
been assayed on platform Affymetrixr Genome-Wide Human SNP Array 6.0
for genotypes, and we used the level 2 data2.

We focused on the 31 known colorectal cancer (CRC) susceptibility loci
(Peters et al., 2013) and extracted SNVs/genes in their neighboring regions
(defined as 2 genes upstream and 2 genes downstream). When pre-processing
the genotype data, we sequentially removed SNVs with confidence score > 0.1;
samples with missing rate > 10%; SNVs with missing rate > 10%; and SNVs
with minor allele frequency < 5%. For gene expression, we sequentially re-
moved samples with probe missing rate > 0.3% and probes with at least one
sample missing. This resulted in 567 SNVs and 67 transcripts on 202 sam-
ples. To incorporate both the dominance/recessive genetic models, we coded
the genotype X(= 0, 1, 2) with two variables: (X1, X2) = (0, 1), if X = 0;
(X1, X2) = (1, 1), if X = 1; and (X1, X2) = (1, 0), if X = 2. Each expression
and each SNV were standardized to have mean 0 and standard deviation 1.

We applied GroupRemMap with the tuning parameters selected by 5-fold
cross validation based on CV.rss, which gave lower error score than CV.ols
on this data set. The resulting eQTL network is shown in Figure 2. There
are 4 cis-edges (i.e., the transcript is in the neighboring region of the SNV)

1 gdac.broadinstitute.org_COADREAD.Merge_transcriptome__agilentg4502a_

07_3__unc_edu__Level_3__unc_lowess_normalization_gene_level__data.Level_3.

2012091300.0.0.tar.gz
2 gdac.broadinstitute.org_COADREAD.Merge_snp__genome_wide_snp_6__broad_mit_

edu__Level_2__birdseed_genotype__birdseed.Level_2.2012051500.0.0.tar.gz
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and 11 trans-edges. Here, the number of detected cis-edges is proportionally
much stronger than that of detected trans-edges, because the number of poten-
tial trans-regulations is more than 50 folds larger than that of cis-regulations.
This is consistent to the common belief that signals of cis-eQTLs are usually
higher than that of trans-eQTLs, and thus the power to detect the former
should be higher. All three SNVs are in the neighbor of gene DIP2B and cis-
regulate the expression of DIP2B, whose protein participates in DNA methy-
lation (GeneCards), suggesting the functional relevance of these SNVs. This
demonstrates that our method, which accounts for group structure, to some
degree encourages the finding of multiple variants in the same gene region.
In addition, some trans-regulations are also intriguing. For example, both
rs3825402 and rs11169561 regulate the expression of GLDC, whose methy-
lation status is a potential epigenetic biomarker for CRC (Ali, 2010). Such
information revealed by the eQTL network can help to shed lights on the
biological mechanism underlying CRC.

rs3825402

rs11169561rs7136702

LAMC2:1q25.3

NMNAT2:1q25.3

CATSPER3:5q31.1

CDKN1A:6p21.2

EIF3H:8q24.11

GLDC:9p24.1

POU2AF1:11q23.1

CCND2:12p13.32

C12orf5:12p13.32

DIP2B:12q13.12

ATF1:12q13.12

ZFP90:16q22.1

rs11169561: chr12.51185950
 rs3825402: chr12.51127738
 rs7136702: chr12.50880216

Fig. 2 eQTLs discovered through GroupRemMap from the colorectal cancer data set.
Nodes: Pink-SNV (3); Blue-Exp(12). Edges: Green-Cis (4); Orange-Trans (11).

We also applied remMap and Group bridge to this data set. remMap identi-
fies 4 cis-eQTLs and 31 trans-eQTLs (Figure S-1), and group bridge does
not detect any eQTL. Although remMap identifies more eQTL edges than
GroupRemMap, based on the observations from simulation studies, it is very
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likely remMap yields more false eQTLs than GroupRemMap. Moreover, the re-
sult of GroupRemMap suggests a trans-hub eQTL rs3825402 while there is no
clear hub-structure for remMap. Note that the cis-eQTL regulation between
rs11169561 and DIP2B, and trans-eQTL regulation between rs3825402 and
GLDC, are detected by both methods.

4.2 Breast cancer

As of September 13, 2012, in TCGA, tumor tissues from 777 breast cancer
patients had been assayed on platform Illumina RNAseq for their gene ex-
pression, and as of August 25, 2012, 870 assayed on platform Genome-Wide
Human SNP Array 6.0 for genotypes. The level 3 RNAseq data3, and level 2
genotype data4 were downloaded from Firehose website.

The pre-processing on the genotype data is the same as the procedure used
for the colorectal cancer data. For the RNA-Seq data, we had the following
pre-processing steps: 1) removed samples with missing values or 0 counts in
more than 15% of the genes; 2) filtered out genes with missing rate > 10%;
3) took log2 transformation on the read-count data; 5) normalized each sam-
ple to have median 0 and standard deviation 1; 6) removed the bottom 20%
genes with small standard deviation. After the pre-processing, 614 samples
had both the genotype and gene expression data. We then focused on 48 genes
and 361 SNVs in the DNA damage repair pathway retrieved from the Gene
Ontology database, because this pathway is essential in maintaining normal
cell functions and proliferation and highly involved in breast cancer etiology
(Gorgoulis et al., 2005; Bartkova et al., 2005; Di Micco et al., 2006; Bartkova
et al., 2006). The number of SNVs each gene contains ranges from 1 to 63,
with the average around 9.

We applied the three methods in the same way as we did in Section 4.1. In-
terestingly, both GroupRemMap and remMap select the same model correspond-
ing to λ1 = 60 and λ2 = 0. This implies that the grouping/hub structure in the
underlying eQTL network of this particular data set may be very weak such
that the group penalty in GroupRemMap does not contribute. Figure 3 shows
the discovered eQTL network, which consists of 92 SNVs, 43 transcripts, 16
cis-edges and 108 trans-edges. On the other hand, group bridge calls many
more eQTLs than GroupRemMap and remMap (see Figure S-2 in the Supple-
mentary Materials). However, based on our experience with simulated data,
we expect a considerable number of them to be false positives.

The eQTL network in Figure 3 reveals interesting eQTLs for a set of genes
implicated in tumorigenesis in breast cancer including BRCA1, ATM , TP53
and TERT (Couch et al., 2013; Muraki et al., 2013; Beillerot et al., 2012).
For example gene TERT is regulated by three SNVs (rs3136189, rs12602273

3 gdac.broadinstitute.org_BRCA.Merge_rnaseq__illuminahiseq_rnaseq__unc_edu_

_Level_3__gene_expression__data.Level_3.2012091300.0.0.tar.gz
4 gdac.broadinstitute.org_BRCA.Merge_snp__genome_wide_snp_6__broad_mit_edu_

_Level_2__birdseed_genotype__birdseed.Level_2.2012082500.0.0.tar.gz
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Fig. 3 eQTLs discovered through GroupRemMap and remMap from the breast cancer data
set. Nodes: Pink-SNV (92); Blue-Exp(43). Edges: Green-Cis (16); Orange-Trans (108).

and rs1242105) from three different genes. Notably, variant rs12602273 is con-
tained in gene TP53 which is a well known tumor suppressor gene. Gene TP53
encodes a protein that regulates the expression of genes in a wide ranges of
biological functions. Mutations in TP53 are associated with a variety of hu-
man cancers (http://www.ncbi.nlm.nih.gov/gene/7157). In addition, gene
TERT is involved in the reverse transcriptase activity of telomerase. Telom-
erase expression plays a crucial role in cellular senescence, as it is normally re-
pressed in postnatal somatic cells resulting in progressive shortening of telom-
eres. Deregulation of telomerase expression in somatic cells may be involved
in oncogenesis (http://www.ncbi.nlm.nih.gov/gene/7015). Haiman et al.
(2011) identified a common variant at the TERT-CLPTM1L locus associated
with estrogen receptor-negative breast cancer. Our result suggests that these
regulatory elements may coordinate to mediate the transcriptional activity of
TERT.
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5 Summary

In this paper, we proposed a novel statistical method, GroupRemMap, for eQTL
analysis. GroupRemMap models the dependent relationship between gene ex-
pressions and genetic variants through multivariate linear regression, and reg-
ularizes the regression coefficients while accounting for the correlation among
SNVs on the genome. By design, the new method is able to control the overall
sparsity of the model, encourage the group selection of SNVs from the same
gene, and facilitate detection of trans-hub-eQTLs. We applied the proposed
method to TCGA data on colorectal and breast cancer, and were able to iden-
tify a few biological relevant eQTLs. The regulatory mechanism underlying
these findings is worth further investigation, which could potentially enhance
our understanding of the underlying biological processes of both cancers.

We implement the main algorithm of GroupRemMap in C programming lan-
guage, and an R package will be available through CRAN. Regarding compu-
tation time, one run of GroupRemMap on one pair of parameter (λ1, λ2) takes
∼2.0 seconds on a Dell R710 computer with Intelr Xeonr X5680 3.3GHz
processors and 128 GB RAM.
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Table S-1 Simulation results under setting IV.

Group.S (54)∗ Indiv.S (121)∗

Method FP FN FP FN

G.remmap(γ = 0.25) 26.90(0.36) 0.13(0.02) 157.62(1.09) 9.58(0.09)
G.remmap(γ = 0.50) 25.90(0.36) 0.12(0.02) 140.44(0.92) 9.06(0.08)
G.remmap(γ = 0.75) 39.02(0.72) 0.12(0.02) 154.91(1.21) 9.38(0.06)

Indiv.S(121): Individual Predictor Selection and the number of true predictors for all
outcomes is 121.
Group.S(54): Group Selection and the number of true groups for all outcomes is 54.
FP: False Positive; FN: False Negative. The numbers within the parentheses are estimated
standard errors.

Table S-2 Summary of mean of FP (SE) and mean of FN (SE) over 200 data sets with
400 responses (> n = 202).

Group.S (54)∗ Indiv.S (121)∗

Method FP FN FP FN

G.remmap 16.81(0.33) 0.38(0.03) 105.51(0.75) 11.39(0.07)
Remmap 92.77(0.73) 0.10(0.02) 252.03(1.27) 9.57(0.08)
G.bridge 1031.71(2.91) 2.93(0.03) 2322.17(7.04) 13.24(0.08)

∗ Group.S(54): Group Selection and the number of true groups for all outcomes is 54.
Indiv.S(121): Individual Predictor Selection and the number of true predictors for all
outcomes is 121.
FP: False Positive; FN: False Negative. The numbers within the parentheses are estimated
standard errors.
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Fig. S-1 eQTLs discovered through remMap from the colorectal cancer data set. Nodes:
Pink-SNV (29); Blue-Exp(26). Edges: Green-Cis (4); Orange-Trans (31).



GroupRemMap for eQTL analysis 3

●
● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

rs13706

rs9296095
rs6796490

rs889162

rs2066490

rs6786702

rs3218522

rs6008700

rs4246742

rs4246215

rs7715815

rs3753008

rs3737058

rs936426

rs3730536

rs2854508

rs2909430

rs4766377

rs25406

rs4645887

rs2387583

rs33967909

rs4766370

rs1059234

rs2736100

rs210139

rs11571425

rs3730428

rs3789144

rs3136189

rs3136208

rs210137

rs3218493

rs3136211

rs6762932

rs8178071

rs11757379

rs12602273

rs3213371

rs1625525

rs6007845
rs1010608

rs11210838

rs2066496

rs3218446

rs12085417

rs3829156

rs17349

rs1056932rs3731544

rs6661173

rs9784491

rs1801270

rs4102401

rs1077220

rs4521758

rs1800935

rs6008729

rs10230502

rs9895829

rs9827569

rs2078486

rs3786567

rs2736122

rs3176343

rs11042431

BAX

BCL6

CDC20

CDC25A

CDC25C

CHEK2

MDM2

MRE11A

PIN1

RAD52

RAD9A

SESN1

WEE1

RAD51

CDC25B

CHEK1

MSH6

ATM

MSH3

BNIP3

BRCA1

BRCA2

CDC6
CDKN1A

CDS1

MSH2

REV3L

TNFRSF10B

DDB2

XRCC2

ERCC2

PCNA

TP53

FEN1

RPL13A

TNF

BAK1

LGMN

RAD50 RRM2B

XRCC1

ERCC4

PPM1D

TERT

PRKDC

GTSE1

TNFSF4

Fig. S-2 eQTLs discovered through group bridge from the breast cancer data set. Nodes:
Pink-SNV (66); Blue-Exp(47). Edges: Green-Cis (17); Orange-Trans (321).


